
CodeArts Build

User Guide

Issue 01

Date 2023-11-30

HUAWEI TECHNOLOGIES CO., LTD.



 
 
Copyright © Huawei Technologies Co., Ltd. 2023. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior
written consent of Huawei Technologies Co., Ltd.
 
Trademarks and Permissions

 and other Huawei trademarks are trademarks of Huawei Technologies Co., Ltd.
All other trademarks and trade names mentioned in this document are the property of their respective
holders.
 
Notice
The purchased products, services and features are stipulated by the contract made between Huawei and
the customer. All or part of the products, services and features described in this document may not be
within the purchase scope or the usage scope. Unless otherwise specified in the contract, all statements,
information, and recommendations in this document are provided "AS IS" without warranties, guarantees
or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the
preparation of this document to ensure accuracy of the contents, but all statements, information, and
recommendations in this document do not constitute a warranty of any kind, express or implied.
  
 
 
 
 
 

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. i



 
 

Security Declaration
 
Vulnerability

Huawei's regulations on product vulnerability management are subject to the Vul. Response Process. For
details about this process, visit the following web page:
https://www.huawei.com/en/psirt/vul-response-process
For vulnerability information, enterprise customers can visit the following web page:
https://securitybulletin.huawei.com/enterprise/en/security-advisory
 
 
 
 

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. ii

https://www.huawei.com/en/psirt/vul-response-process
https://securitybulletin.huawei.com/enterprise/en/security-advisory


Contents

1 Before You Start....................................................................................................................... 1

2 Roles & Permissions................................................................................................................ 2

3 Process........................................................................................................................................3

4 Logging In to the CodeArts Build Homepage...................................................................5

5 Creating a Build Task..............................................................................................................6

6 Configuring Build Actions......................................................................................................8
6.1 Introduction............................................................................................................................................................................... 8
6.2 Graphical Build......................................................................................................................................................................... 9
6.2.1 Configuring Build Environment.......................................................................................................................................9
6.2.2 Configuring Code Download......................................................................................................................................... 10
6.2.3 Build with Maven.............................................................................................................................................................. 12
6.2.3.1 Operation Guide............................................................................................................................................................. 12
6.2.3.2 Configuring a Repository.............................................................................................................................................14
6.2.3.3 Configuring the Release to Self-hosted Repos.................................................................................................... 14
6.2.3.4 Configuring a Unit Test................................................................................................................................................ 16
6.2.4 Build with Android............................................................................................................................................................ 21
6.2.5 Sign Android APK.............................................................................................................................................................. 22
6.2.6 Build with npm................................................................................................................................................................... 23
6.2.7 Build with Gradle............................................................................................................................................................... 23
6.2.8 Build with Yarn................................................................................................................................................................... 24
6.2.9 Build with Gulp...................................................................................................................................................................24
6.2.10 Build with Grunt.............................................................................................................................................................. 24
6.2.11 Build with Mono.............................................................................................................................................................. 25
6.2.12 Build in PHP...................................................................................................................................................................... 25
6.2.13 Build with Setuptools.....................................................................................................................................................26
6.2.14 Build with PyInstaller..................................................................................................................................................... 26
6.2.15 Run Shell Commands.................................................................................................................................................... 27
6.2.16 Build with GNU Arm...................................................................................................................................................... 27
6.2.17 Build with CMake............................................................................................................................................................ 28
6.2.18 Build with Ant.................................................................................................................................................................. 29
6.2.19 Build with Go.................................................................................................................................................................... 29

CodeArts Build
User Guide Contents

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. iii



6.2.20 Build Android Quick App.............................................................................................................................................. 30
6.2.21 Creating Images and Pushing to SWR..................................................................................................................... 30
6.2.22 Using SWR Public Images............................................................................................................................................ 32
6.2.23 Uploading Software Packages to Release Repos................................................................................................. 33
6.2.24 Uploading Files to OBS................................................................................................................................................. 35
6.2.25 Running Docker Commands........................................................................................................................................36
6.2.26 Downloading Package from Release Repos...........................................................................................................36
6.2.27 Downloading File from File Manager...................................................................................................................... 37
6.3 Code-based Build.................................................................................................................................................................. 38
6.3.1 Configuring a Task............................................................................................................................................................ 38
6.3.1.1 Introducing the YAML File Structure....................................................................................................................... 38
6.3.1.2 Using YAML for Build....................................................................................................................................................41
6.3.1.3 Using YAML to Configure Code Download........................................................................................................... 42
6.3.1.4 Using YAML to Configure Manifest File Download from Repositories........................................................43
6.3.1.5 Using YAML to Configure and Execute Shell Commands................................................................................ 45
6.3.1.6 Using YAML to Configure a Maven Build.............................................................................................................. 45
6.3.1.7 Using YAML to Configure an npm Build................................................................................................................ 47
6.3.1.8 Using YAML to Configure a Yarn Build...................................................................................................................47
6.3.1.9 Using YAML to Configure a Build with Go............................................................................................................ 48
6.3.1.10 Using YAML to Configure a Build with Gulp......................................................................................................48
6.3.1.11 Using YAML to Configure a Build with Grunt....................................................................................................49
6.3.1.12 Using YAML to Configure a PHP Build................................................................................................................. 49
6.3.1.13 Using YAML to Configure a Build with GNU Arm............................................................................................49
6.3.1.14 Using YAML to Configure a Build with Setuptools.......................................................................................... 50
6.3.1.15 Using YAML to Configure a Build with PyInstaller...........................................................................................50
6.3.1.16 Using YAML to Configure a Python Build........................................................................................................... 51
6.3.1.17 Using YAML to Configure a Gradle Build............................................................................................................ 51
6.3.1.18 Using YAML to Configure an Ant Build................................................................................................................51
6.3.1.19 Using YAML to Configure a CMake Build........................................................................................................... 52
6.3.1.20 Using YAML to Configure a Mono Build............................................................................................................. 52
6.3.1.21 Using YAML to Configure a Build with Flutter.................................................................................................. 52
6.3.1.22 Using YAML to Configure an sbt Build.................................................................................................................53
6.3.1.23 Using YAML to Configure an Android Build....................................................................................................... 53
6.3.1.24 Using YAML to Sign Android APK.......................................................................................................................... 54
6.3.1.25 Using YAML to Inject an APM Probe into an Android App........................................................................... 54
6.3.1.26 Using YAML to Build an Android Quick App......................................................................................................55
6.3.1.27 Using YAML to Configure a Bazel Build...............................................................................................................55
6.3.1.28 Using YAML to Configure a Build with Grails.................................................................................................... 56
6.3.1.29 Using YAML to Build an Android App with Ionic..............................................................................................56
6.3.1.30 Using YAML to Configure a Fortran Build...........................................................................................................56
6.3.1.31 Using YAML to Configure a Build with MSBuild...............................................................................................57
6.3.1.32 Using YAML to Create an Image and Upload It to SWR............................................................................... 57

CodeArts Build
User Guide Contents

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. iv



6.3.1.33 Using YAML to Specify SWR Public Images........................................................................................................58
6.3.1.34 Using YAML to Upload Files to OBS..................................................................................................................... 58
6.3.1.35 Using YAML to Download Files.............................................................................................................................. 59
6.3.1.36 Using YAML to Upload Binary Packages to a Repository..............................................................................59
6.3.1.37 Using YAML to Download Binary Packages....................................................................................................... 60
6.3.1.38 Using YAML to Run Docker Commands.............................................................................................................. 60
6.3.2 Configuring Tasks.............................................................................................................................................................. 61

7 Running a Build Task............................................................................................................64

8 Viewing a Build Task............................................................................................................ 65

9 Managing and Configuring a Build Task......................................................................... 67
9.1 Editing, Deleting, Copying, and Favoriting a Build Task..........................................................................................67
9.2 Configuring Build Parameters...........................................................................................................................................68
9.3 Configuring Execution Plans............................................................................................................................................. 70
9.4 Configuring Role Permissions........................................................................................................................................... 71
9.5 Configuring Event Notifications.......................................................................................................................................72

10 Other Operations................................................................................................................ 73
10.1 Configuring Code Source................................................................................................................................................. 73
10.1.1 Introduction.......................................................................................................................................................................73
10.1.2 Using Git for Build.......................................................................................................................................................... 73
10.2 Operations Recorded by CTS.......................................................................................................................................... 74
10.3 Recycle Bin............................................................................................................................................................................ 76
10.4 File Management............................................................................................................................................................... 76
10.5 Customizing Templates.................................................................................................................................................... 81
10.6 Custom Build Environments............................................................................................................................................81

CodeArts Build
User Guide Contents

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. v



1 Before You Start

Build is the process of converting source code into a target file and packaging
configuration and resource files.

CodeArts Build provides an easy-to-use, cloud-based build platform that supports
multiple programming languages, helping you achieve continuous delivery, with
shorter delivery period and higher delivery efficiency. With CodeArts Build, you can
create, configure, and run build tasks with a few clicks. CodeArts Build also
supports automation of code retrieval, build, and packaging, as well as real-time
status monitoring.

For more product information, see Service Overview.

Before using CodeArts Build, learn about the roles, permissions, and process of
the service.

CodeArts Build
User Guide 1 Before You Start

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 1

https://support.huaweicloud.com/eu/productdesc-codeci/cloudbuild_07_0001.html


2 Roles & Permissions

The following table describes the default user role types and build task operation
permissions in CodeArts Build.

Table 2-1 Default role permission matrix

Role Edit Delete View Run Clone Disabl
e

Assign
Permissions

Task
creator

√ (*) √ (*) √ (*) √ (*) √ (*) √ (*) √ (*)

Project
creator

√ (*) √ (*) √ (*) √ (*) √ (*) √ (*) √ (*)

Project
manager

√ √ √ √ √ √ √

Developer √ √ √ √ √ √ ×

Test
manager

× × √ × × × ×

Tester × × × × × × ×

Participant × × × × × × ×

Viewer × × √ × × × ×

 

NO TE

● A check mark (√) indicates that the user has the permission by default, and a cross
mark (×) indicates that the user does not have the permission by default.

● Roles who have the permission to assign permissions can modify the permission matrix,
but the permissions marked with an asterisk (*) cannot be modified.

● Project creators, project managers, and developers can create build tasks.

If the current role permissions do not meet your needs, configure the permissions
by referring to Configuring Role Permissions.

CodeArts Build
User Guide 2 Roles & Permissions

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 2



3 Process

CodeArts Build provides an easy-to-use cloud-based build platform that supports
multiple programming languages, helping you achieve continuous delivery with
shorter delivery period and higher delivery efficiency. With CodeArts Build, you can
create, configure, and run build tasks with a few clicks. CodeArts Build also
supports automation of code retrieval, build, and packaging, as well as real-time
status monitoring.

Introduction
This topic describes the basic build process.

The process is described in the following table.

CodeArts Build
User Guide 3 Process

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 3



Operation Description

Log in to the
CodeArts Build
homepage

Access the homepage of CodeArts Build.

Create a task Create a build task and configure the following
information:
● Code source: Select Repo, GitHub, Git, or Pipeline.
● Build template: CodeArts Build comes with default

templates for mainstream build standards such as
Maven, Ant, Gradle, and CMake. You can also
customize your build environment by creating images
or using public images to meet special build
requirements.

● Build actions: CodeArts Build has various preset
actions. You can customize the combination of actions.

Run a task After the task is configured, run the task. For details, see
Running a Build Task.

View the build task After the task execution is complete, you can view the
details and execution results of the task. For details, see
Viewing the Build Task.

CodeArts Build
User Guide 3 Process

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 4



4 Logging In to the CodeArts Build
Homepage

Prerequisites
● You have registered a HUAWEI ID and enabled Huawei Cloud services.

Procedure

Step 1 Log in to the Huawei Cloud console.

Step 2 Click  in the upper left corner of the page and choose Developer Services >
CodeArts Build from the service list.

Step 3 Click Access Service to go to the service homepage.

● Click  in the upper left corner of the page and select a region.

● Click More to access the following functions:

– Custom Templates

– Custom Build Environments

– Files

– Recycle Bin

– Pools

----End

CodeArts Build
User Guide 4 Logging In to the CodeArts Build Homepage

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 5

https://support.huaweicloud.com/eu/usermanual-account/account_id_001.html
https://console.eu.huaweicloud.com/
https://support.huaweicloud.com/eu/usermanual-devcloud/devcloud_01_0015.html


5 Creating a Build Task

Prerequisites
● A project is available. If no project is available, create one.
● A code repository has been created in the project. If no code repository is

available, create one.

Configuring Basic Information
1. Log in to the CodeArts Build homepage.
2. Click Create Task. On the displayed page, configure the basic information of

the build task.

Table 5-1 Basic information

Parameter Description

Task Name Enter the name of the task.

Project Select the project that the task belongs to.

Code Source ● Repo: By default, CodeArts Build pulls code from
CodeArts Repo. Select a source code repository and
branch.

● Git: For code hosted on other services, you can use a Git
connection to pull the code. For details, see Using Git for
Build.

● Pipeline: If the code source is from a pipeline, the code
can be executed only by the pipeline driver and cannot
be executed alone.

Description Describe the task.

 

Configuring a Build Template
1. Click Next. The Build Template page is displayed.
2. Select a suitable build template and click Next. You can also select the Blank

Template.

CodeArts Build
User Guide 5 Creating a Build Task

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 6

https://support.huaweicloud.com/eu/qs-projectman/projectman_qs_1000.html
https://support.huaweicloud.com/eu/usermanual-codeartsrepo/codeartsrepo_03_0017.html


If the existing templates do not meet your needs, customize templates.

Configuring Build Actions
1. Click Next. The Build Action tab page is displayed, showing the default

action combination of the selected template.

2. Click  to add build actions as required.
For details, see Configuring Build Actions.

NO TE

You can also use SoftWare Repository for Container (SWR) public images to build
a custom environment.

Configuring Other Information
Configure information on other tab pages of the navigation bar.

● On the Basic Information tab page, configure the task name, project, code
source, and task description.

● On the Build Actions tab page, configure build actions.
● On the Parameters tab page, customize parameters for running the build

task.
● On the Schedule tab page, configure the scheduled execution and continuous

integration triggering policy.

CodeArts Build
User Guide 5 Creating a Build Task

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 7



6 Configuring Build Actions

6.1 Introduction
CodeArts Build provides graphical build and code-based build.

Graphical Build
CodeArts Build provides various build actions and allows you to orchestrate them
as required. If the preset build tool version cannot meet your requirements,
customize a build environment and package it into a Docker image. Push the
image to SoftWare Repository for Container (SWR) for future use. For details, see
Creating Images and Pushing to SWR and Using SWR Public Images.

Code-based Build
Code-based build only uses Repo as the code source.

You can use YAML files to configure build scripts. To be specific, you can use YAML
syntax to write a build.yml file based on the build environment, parameters,
commands, and actions required during the build process. You can also add the
build.yml file to a code repository together with the built code. The system uses
the build.yml file as the build script to execute the build task, making the build
process traceable, recoverable, secure, and reliable. Code-based build has the
following advantages:

● The script file clearly describes the build process, including build parameters,
commands, steps, and post-build operations, to make the build process
trustworthy.

● The build.yml configuration corresponding to the current commit is used for
each build to ensure that the build can be restored and traced. You do not
need to worry that the previous task cannot be executed repeatedly due to
build configuration modification.

● If the build script needs to be modified for a new feature, you can create a
branch to modify the build.yml file for testing without worrying about
affecting other branches.

This build method supports the configuration of a single task or multiple tasks.

CodeArts Build
User Guide 6 Configuring Build Actions

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 8



6.2 Graphical Build

6.2.1 Configuring Build Environment
Configure a global runtime environment for the build task.

NO TE

There are x86 servers and Arm servers. For software running on different chip architectures,
select the corresponding hosts. Your software will run better on a server using the same
architecture. Kunpeng servers are Arm-based.

macOS executors

● Currently, you can run build jobs on macOS executors. All macOS versions are
supported.

● If you select a macOS executor, only the following build actions are available:
Run Shell Commands, Uploading Software Packages to Release Repos,
and Downloading Package from Release Repos.

Configuration Description
Configure the build environment.

The parameters are described in the following table.

Parameter Description

Host type x86/Kunpeng (Arm) server

CodeArts Build
User Guide 6 Configuring Build Actions

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 9



Parameter Description

Executor Compute resource used to execute
build tasks. In CodeArts Build, VMs are
used. Executors can be built-in or
custom executors.
● Built-in executors: Provided by

CodeArts Build with out-of-the-box
availability.

● Custom executors: Compute
resources provided by users. They
can be hosted in CodeArts Build
after registration. CodeArts Build
schedules these executors to
execute build tasks.

You can select a built-in or custom
executor. A custom executor is the
agent executor added to the agent
pool. For details about how to
customize an executor, see Agent
Pools.
NOTE

Built-in executors are only available in x86
servers.

 

6.2.2 Configuring Code Download
Configure the code download mode. You can use the specified code repository tag
or commit ID to build the code. In addition, you can enable the automatic update
of submodules and Git LFS.

Configuration Description
Configure the code download.

The parameters are described in the following table.

Parameter Description

Use a specified code repository tag or
commit ID

Do not specify a tag or a commit ID,
specify a tag, or specify a commit ID.

CodeArts Build
User Guide 6 Configuring Build Actions

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 10

https://support.huaweicloud.com/eu/usermanual-devcloud/devcloud_01_0015.html
https://support.huaweicloud.com/eu/usermanual-devcloud/devcloud_01_0015.html


Parameter Description

Auto Update Submodule is a concept of Git and is
used to solve the problem that a code
repository contains and uses the code
repository of other projects. For details,
see Submodules (Git Submodule).
● Enabled: If the code repository

contains submodules, the system
automatically pulls the code from
the submodule repository during a
build.

● Disabled: The system does not
automatically pull the code of the
submodule repository.

Enable Git LFS Determine whether to enable Git LFS
as required. By default, large files such
as audio, video, and images are not
pulled. After Git LFS is enabled, all files
are pulled.

 

Build by Tag
A tag is associated with a code repository. If you select Repo as the code source,
you can create a tag by referring to Managing Tags.

1. When creating a build task, select Tag to use the code of a previous version.
2. During task execution, a dialog box is displayed. Enter the tag name and click

Confirm to run the task.

CodeArts Build
User Guide 6 Configuring Build Actions

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 11

https://support.huaweicloud.com/eu/usermanual-codeartsrepo/codeartsrepo_03_0066.html
https://support.huaweicloud.com/eu/usermanual-codeartsrepo/codeartsrepo_03_0037.html


Build by Commit ID

A commit ID is the number generated when the code is committed. If you select
Repo as the code source, the commit ID is displayed in the code repository as
shown in the following figure.

In a build task, you can specify the commit ID to use the code of a previous
version for building.

1. Select Commit ID, enter the clone depth, and save the task.

NO TE

The clone depth is the number of revisions of the repository that will be cloned. A
larger value indicates a longer time for checking out the code. The clone depth must
be a positive integer. The recommended maximum depth is 25.

For example, if Clone Depth is set to 5, you can set Commit ID to any of the previous
five commits.

2. Enter the commit ID and click Confirm to start the task.

6.2.3 Build with Maven

6.2.3.1 Operation Guide

Built-in tools such as Maven and JDK are provided. Select a tool version based on
the build scenarios.

Maven is used to build a Java project, which has the following functions:

● You can run mvn package, mvn deploy, or other shell commands for your
build.

● You can use public repositories not provided by CodeArts for your build.
● You can add other private repositories.
● Deployment configurations can be automatically added to the pom.xml file.

You can run mvn deploy to release private dependencies to self-hosted repos.
● You can view reports of JUnit unit testing after build.

CodeArts Build
User Guide 6 Configuring Build Actions

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 12



Configuration Description
Add Build with Maven when configuring build actions.

The parameters are described in the following table.

Parameter Description

Action Name Name of a build action. It can be customized.

Tool Version Select a tool version.
NOTE

If the preset tool version cannot meet your requirements, you can
customize a Docker image, add dependencies and tools required
by the project, package the required environment into a Docker
image, and push the image to SoftWare Repository for Container
(SWR). For details, see Creating Images and Pushing to SWR and
Using SWR Public Images.

Commands Configure Maven commands. You can also use default
commands.

setting File
Configuration

The setting file is automatically generated with
repositories. The optimal repository access mode is
automatically configured based on the user's IP address,
which may be in regions in or outside China. You are
advised to retain the default settings.
You can also add a repository that cannot be found in
CodeArts Mirrors, Self-hosted Repos, or Huawei SDK
repositories. For details, see Configuring a Repository.

Release to Self-
hosted Repos

By default, CodeArts Build uses the self-hosted repos as the
download source of private dependency. The configuration
is required for uploading build products to the self-hosted
repos and store the build products as dependencies for
other projects. For details, see Configuring the Release to
Self-hosted Repos.

Unit test To process unit test results, set the parameters. For details,
see Configuring a Unit Test.

Cache Opt to use the cache to improve the build speed. If you set
Use Dependency Cache to Yes, the downloaded
dependency package is cached during each build. In this
way, the dependency package does not need to be pulled
repeatedly during subsequent builds, which effectively
improves the build speed.
NOTE

After the dependency package built by Maven is stored in the
cache, the cache directory is updated only when a new dependency
package is introduced to the project built by the tenant. The
existing dependency package cache file cannot be updated.

 

CodeArts Build
User Guide 6 Configuring Build Actions

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 13



6.2.3.2 Configuring a Repository

Configuration Description
This section describes how to configure repositories not provided by CodeArts for
builds. In the Build with Maven action, there are public and private repositories
based on their sources, networks, and permissions.

● Public Repositories
– CodeArts Mirror: By default, CodeArts Mirror is configured. This repository

can be used in build tasks without any modification.
– Custom public repositories: A public repository not provided by CodeArts

can be used only after being configured in the Build with Maven action.
(A public repository is accessible in the Internet.)

● Private Repositories
– Self-hosted Repos: By default, self-hosted repos of CodeArts Artifact (if

subscribed) are configured. These repositories can be used in build tasks
without any modification.

– Custom private repository: A private repository not provided by CodeArts
can be used only after being configured in the Build with Maven action.
(A private repository is accessible only to authorized accounts.)

Configuring a Custom Public Repository
1. In the Build with Maven action, expand setting File Configuration.
2. Add a public repository, enter the repository address, and select Release and

Snapshot as required.
– Release: If this option is selected, the build process attempts to download

the release version dependency from the repository.
– Snapshot: If this option is selected, the build process attempts to

download the snapshot version dependency from the repository.

NO TE

Select either Release or Snapshot, or both.

Configuring a Custom Private Repository
1. Create a Nexus repository service endpoint, such as test01.
2. In the Build with Maven action, expand setting File Configuration.

Add a private repository, select the service endpoint created in step 1, and
select Release and Snapshot as required.

6.2.3.3 Configuring the Release to Self-hosted Repos

Configuration Description
By default, CodeArts Build uses the self-hosted repos as the download source of
private dependency. The configuration is required for uploading build products to
the self-hosted repos and store the build products as dependencies for other
projects.

CodeArts Build
User Guide 6 Configuring Build Actions

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 14

https://support.huaweicloud.com/eu/usermanual-pipeline/pipeline_01_0011.html#section4


● Release repo is used to archive software packages for deployment or other
purposes.

● Self-hosted repo is used to store tool packages that other projects depend
on.
Self-hosted Maven repositories are classified into release and snapshot
repositories.
– For private dependency packages released for debugging, add the -

SNAPSHOT suffix to the dependency version (for example, 1.0.0-
SNAPSHOT). During each release, the dependency is automatically
released to the snapshot repository. The version does not need to be
updated each time the dependency is released. You can add the -U
parameter to the build command to obtain the latest version.

– For officially released private dependency packages, do not add the -
SNAPSHOT suffix to the dependency version (for example, 1.0.0). During
each release, the dependency is automatically released to the release
repository. The version must be updated each time the dependency is
released. Otherwise, the latest dependency package cannot be obtained
during the build.

NO TE

Pay attention to their differences. If you upload a dependency to a release repo, it cannot
be downloaded during building.

Procedure

Step 1 Create a self-hosted repo. (Skip this step if the repository is available.)

Step 2 Use the Maven template to create a code repository.

Step 3 Click the name of the code repository. On the Files page that is displayed,
configure the self-hosted repo coordinate information (groupId, artifactId, and
version) in the pom.xml file.

Modify the self-hosted project to be built. The coordinates specified in the
pom.xml file are as follows:

<project xmlns="http://maven.apache.org/POM/4.0.0"xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance"xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-
v4_0_0.xsd"> 
    <modelVersion>4.0.0</modelVersion> 
    <groupId>come.test.demo</groupId> 
    <artifactId>javaMavenDemo</artifactId> 
    <packaging>jar</packaging> 
    <version>1.0</version> 
    <name>maven_demo</name> 
    <url>http://maven.apache.org</url> 
    <dependencies> 
        <dependency> 
            <groupId>junit</groupId> 
            <artifactId>junit</artifactId> 
            <version>3.8.1</version> 
            <scope>test</scope> 
        </dependency> 
    </dependencies>

Step 4 In the build with Maven action, configure Build with Maven, expand Release to
Self-hosted Repos, and select Configure all POMs.

CodeArts Build
User Guide 6 Configuring Build Actions

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 15

https://support.huaweicloud.com/eu/usermanual-cloudartifact/cloudartifact_01_0008.html
https://support.huaweicloud.com/eu/usermanual-codeartsrepo/codeartsrepo_03_0017.html


● Do not configure POM: Self-hosted repos are not required.
● Configure all POMs: Deployment configurations are added to all pom.xml

files of the project. The mvn deploy command is used to upload the built
dependency package to the self-hosted repo.

Step 5 In the command window, use # to comment out the mvn package -
Dmaven.test.skip=true -U -e -X -B command.

Step 6 Delete # before the #mvn deploy -Dmaven.test.skip=true -U -e -X -B command.

Step 7 Run the build task. After the execution is successful, the dependency package is
released to the self-hosted repo.

Step 8 In the navigation pane, choose Artifact > Self-hosted Repos. On the displayed
page, search for and view the uploaded dependency.

After the upload is successful, add the following coordinates to other projects for
reference.

<dependency>
    <groupId>com.test.demo</groupId>
    <artifactId>javaMavenDemo</artifactId>
    <version>1.0</version>
</dependency>

----End

6.2.3.4 Configuring a Unit Test

Configuration Description
To process the unit test results, configure the unit test function provided by the
build with Maven build. Compile the unit test code in the project and ensure that
the following conditions are met:

● The storage location of unit test code must comply with the default unit test
case directory specifications and naming specifications of Maven. You can
specify the case location in the configuration.
For example, if the unit test cases are stored in src/test/java/{{package}}/,
the unit test is automatically executed during a Maven build task.

● The project cannot contain the configuration code of ignoring unit test cases.
Click the name of the code repository. The Files page of CodeArts Repo is
displayed. Verify that the following code does not exist in the pom.xml file of
the project:
<plugin>  
    <groupId>org.apache.maven.plugins</groupId>  
    <artifactId>maven-surefire-plugin</artifactId>
    <version>2.18.1</version>  

CodeArts Build
User Guide 6 Configuring Build Actions

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 16



    <configuration>  
        <skipTests>true</skipTests>  
    </configuration>  
</plugin>

● Click the code repository name. On the File page of CodeArts Repo, import
the JUnit dependency to the pom.xml file. The following shows the code
example.
<dependency>
     <groupId>junit</groupId>
     <artifactId>junit</artifactId>
     <version>4.7</version>
 </dependency>

Procedure
Step 1 Create a code repository and upload the code to the code repository.

Step 2 Create a unit test class in the src directory, as shown in the following figure.

The code of the demo project is as follows:
package test;
 

CodeArts Build
User Guide 6 Configuring Build Actions

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 17

https://support.huaweicloud.com/eu/usermanual-codeartsrepo/codeartsrepo_03_0017.html
https://support.huaweicloud.com/eu/usermanual-codeartsrepo/codeartsrepo_03_0016.html


public class Demo {
    public String test(Integer i) {
        switch (i) {
            case 1:
                return "1";
            case 2:
                return "2";
            default:
                return "0";
        }
}
}

The unit test code is shown in the following section. @Test indicates the test
method annotation.

package test;
 
import org.junit.Test;
 
public class DemoTest {
    private Demo demo=new Demo();
    @Test
    public void  test(){
        assert demo.test(1).equals("1");
        assert demo.test(2).equals("2");
        assert demo.test(3).equals("0");
    }
}

Step 3 In the command window displayed in the build with Maven, use # to comment
out the mvn package -Dmaven.test.skip=true -U -e -X -B command.

Step 4 Delete # before the #mvn deploy -Dmaven.test.skip=true -U -e -X -B command.

Step 5 Expand Unit Test.

● Select Yes for Print Test Results.
● Configure Ignore Test Failure as required.

CodeArts Build
User Guide 6 Configuring Build Actions

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 18



– If Yes is selected, the build task is successful when the test case fails.
– If No is selected, the build task fails when the test case fails.

● Configure the path of the unit test result file.
The test report needs to collect the unit test result to generate a visual report.
Therefore, specify the path of the unit test result file.
– In most cases, retain the default path **/TEST*.xml.
– To improve the accuracy of the result, you can specify a precise report

path, for example, target/surefire-reports/TEST*.xml.
● Configure Print Unit Test Results as required. For details about the

configuration method, see Generating a Unit Test Report Using JaCoCo.
● Configure the report location.

A relative path in the project whose files will all be uploaded. Example: target/
site/jacoco

Step 6 Run the build task.

After the task is successfully executed, you can view the test report on the Test
tab page of the task execution details page. If you set Print Unit Test Results to
Yes, a test report is generated. You can click Download Test Coverage Report to
download the report.

----End

Generating a Unit Test Report Using JaCoCo
● Configuration method for a single-module project

The jacoco-maven-plugin add-on has been added to the project to generate
the unit coverage report. That is, the following configuration has been added
to the pom.xml file:
<plugin>
     <groupId>org.jacoco</groupId>
     <artifactId>jacoco-maven-plugin</artifactId>
     <version>0.8.5</version>
     <executions>
         <execution>
             <goals>
                 <goal>prepare-agent</goal>
             </goals>
         </execution>
         <execution>
             <id>report</id>
             <phase>test</phase>
             <goals>
                 <goal>report</goal>
             </goals>
         </execution>
     </executions>
 </plugin>

By default, the JaCoCo report target is in the verify phase. You need to define
the report target as the test phase. When mvn test is executed, the unit test
report is generated in the target/site/jacoco directory of the code.

● Configuration method for a multi-module project
Assume that the code structure of a multi-module project is as follows to
describe how to configure and generate a unit test report.

CodeArts Build
User Guide 6 Configuring Build Actions

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 19



├── module1
│   └── pom.xml
├── module2
│   └── pom.xml
├── module3
│   └── pom.xml
├── pom.xml

a. Add a module for aggregation under the project. The name is report. The
code structure after the aggregation module is added is as follows:
├── module1
│   └── pom.xml
├── module2
│   └── pom.xml
├── module3
│   └── pom.xml
├── report
│   └── pom.xml
├── pom.xml

b. Add the jacoco-maven-plugin add-on to the pom.xml file in the root
directory of the project.
<!--Configure unit test coverage-->
 <plugin>
     <groupId>org.jacoco</groupId>
     <artifactId>jacoco-maven-plugin</artifactId>
     <version>0.8.3</version>
     <executions>
         <execution>
             <goals>
                 <goal>prepare-agent</goal>
             </goals>
         </execution>
     </executions>
 </plugin>

c. Configure the pom.xml file of the aggregation module.
Introduce all dependent modules in dependency mode and use report-
aggregate to define the JaCoCo aggregation target.
<dependencies>
     <dependency>
         <groupId>${project.groupId}</groupId>
         <artifactId>module1</artifactId>
         <version>${project.version}</version>
     </dependency>
     <dependency>
         <groupId>${project.groupId}</groupId>
         <artifactId>module2</artifactId>
         <version>${project.version}</version>
     </dependency>
     <dependency>
         <groupId>${project.groupId}</groupId>
         <artifactId>module3</artifactId>
         <version>${project.version}</version>
     </dependency>
 </dependencies>

 <build>
     <plugins>
         <plugin>
             <groupId>org.jacoco</groupId>
             <artifactId>jacoco-maven-plugin</artifactId>
             <version>0.8.3</version>
             <executions>
                 <execution>
                     <id>report-aggregate</id>
                     <phase>test</phase>
                     <goals>
                         <goal>report-aggregate</goal>

CodeArts Build
User Guide 6 Configuring Build Actions

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 20



                     </goals>
                 </execution>
             </executions>
         </plugin>
     </plugins>
 </build>

After the configuration, run mvn test in the root directory of the project.
After the command is successfully executed, the coverage report of each
module is generated in the report/target/site/jacoco-aggregate
directory. You can also customize the output path of the report in
outputDirectory.
<plugin>
     <groupId>org.jacoco</groupId>
     <artifactId>jacoco-maven-plugin</artifactId>
     <version>0.8.3</version>
     <executions>
         <execution>
             <id>report-aggregate</id>
             <phase>test</phase>
             <goals>
                 <goal>report-aggregate</goal>
             </goals>
             <configuration>
                 <outputDirectory>target/site/jacoco</outputDirectory>
             </configuration>
         </execution>
     </executions>
 </plugin>

6.2.4 Build with Android
The Android build system compiles application resources and source code, and
then packages them into APKs that can be deployed, signed, and distributed.

Custom Installation

sdkmanager command (sdkmanager packages [options]): installs the required
Android build environment. For example, sdkmanager "platform-tools"
"platforms;android-28" --sdk_root=./ indicates that sdkmanager is used to
download platform-tools and platforms;android-28 to the root directory of the
current code.

Configuration Description

Add Build with Android, when configuring build actions.

The parameters are described in the following table.

Parameter Description

Action Name Name of a build action. It can be customized.

Gradle Select a Gradle version.

JDK Select a JDK version.

NDK Select an NDK version as required. You can also select No.

CodeArts Build
User Guide 6 Configuring Build Actions

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 21



Parameter Description

Commands Configure the Gradle commands. You can also use default
commands.

 

Android Version Description
● SDK: used to specify compileSdkVersion.
● Build Tools: used to specify buildToolsVersion.

You can find the two versions in the build.gradle file or the global configuration
file (user-defined) of the project.

NO TE

● Select compileSdkVersion or buildToolsVersion based on project requirements.
● The Gradle wrapper build mode is also supported. If the provided Gradle version does

not meet your requirements, you can run the gradlew command for build using the
wrapper. The required Gradle version will be automatically downloaded. Example of the
build command: ./gradlew clean build.

6.2.5 Sign Android APK
With the Sign Android APK action, use apksigner to sign the Android APK.

Configuration Description
1. Add Sign Android APK after Build with Android, when configuring build

actions.
The parameters are described in the following table.

Parameter Description

Action Name Name of a build action. It can be customized.

APK Location Location of the APK file to be signed generated after
Android building. Regular expressions are supported. For
example, build/bin/*.apk can be used to match the
built APK package.

CodeArts Build
User Guide 6 Configuring Build Actions

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 22



Parameter Description

Keystore File Keystore file used for signature, which is generated by
referring to Generating Keystore Signature Files.
Select a keystore file from the list of files already
uploaded after you click Manage Files.

Keystore
Password

Keystore password.

Alias Alias of the keystore file.

Key Password Password of the key.

apksigner
Command

Custom signature parameter. The default value is --
verbose.

 
2. Check whether the signing is successful.

After the configuration is complete, run the build task. After the task is
executed successfully, view the build log. If "result: Signed" is displayed in the
Android APK signature log, the signing is successful.

6.2.6 Build with npm
Build Vue and Webpack projects with npm.

Configuration Description

Add Build with npm, when configuring build actions.

The parameters are described in the following table.

Parameter Description

Action Name Name of a build action. It can be customized.

Tool Version Select a tool version.

Commands Configure the npm commands. You can also use default
commands. If there are special build requirements, you can
enter your custom build script in the text box.

 

6.2.7 Build with Gradle
Build a Java, Groovy, or Scala project with Gradle.

Configuration Description

Add Build with Gradle, when configuring build actions.

The parameters are described in the following table.

CodeArts Build
User Guide 6 Configuring Build Actions

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 23



Parameter Description

Action Name Name of a build action. It can be customized.

Gradle Select a Gradle version.

JDK Select a JDK version.

Commands Configure the Gradle commands. You can also use default
commands. If there are special build requirements, you can
enter your custom build script in the text box.

 

6.2.8 Build with Yarn
Build a JavaScript project with Yarn.

Add Build with Yarn, when configuring build actions.

The parameters are described in the following table.

Parameter Description

Action Name Name of a build action. It can be customized.

Tool Version Select a tool version.

Commands Configure the Yarn commands. You can also use default
commands. If there are special build requirements, you can
enter your custom build script in the text box.

 

6.2.9 Build with Gulp
Build a frontend IDE with Gulp.

Add Build with Gulp, when configuring build actions.

The parameters are described in the following table.

Parameter Description

Action Name Name of a build action. It can be customized.

Tool Version Select a tool version.

Commands Configure the Gulp commands. You can also use default
commands. If there are special build requirements, you can
enter your custom build script in the text box.

 

6.2.10 Build with Grunt
Build a JavaScript project with Grunt.

CodeArts Build
User Guide 6 Configuring Build Actions

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 24



Add Build with Grunt, when configuring build actions.

The parameters are described in the following table.

Parameter Description

Action Name Name of a build action. It can be customized.

Tool Version Select a tool version.

Commands Configure the Grunt commands. You can also use default
commands. If there are special build requirements, you can
enter your custom build script in the text box.

 

6.2.11 Build with Mono
Build a project with MSBuild and .NET on Mono Linux for x86 and Arm.

Add Build with Mono, when configuring build actions.

The parameters are described in the following table.

Parameter Description

Action Name Name of a build action. It can be customized.

Tool Version Select a tool version.

Commands Configure the Mono commands. You can also use default
commands. If there are special build requirements, you can
enter your custom build script in the text box.

 

6.2.12 Build in PHP
Install PHP and Composer for PHP libraries.

Add Build in PHP, when configuring build actions.

The parameters are described in the following table.

Parameter Description

Action Name Name of a build action. It can be customized.

Tool Version Select a tool version.

Commands Configure the PHP commands. You can also use default
commands. If there are special build requirements, you can
enter your custom build script in the text box.

 

CodeArts Build
User Guide 6 Configuring Build Actions

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 25



6.2.13 Build with Setuptools
Build a Python project with setuptools.

Prerequisites

When using setuptools to pack the code, ensure that the setup.py file exists in the
root directory of the code. For details on how to write the file, see the official
instructions of Python.

Configuration Description

Add Build with Setuptools, when configuring build actions.

The parameters are described in the following table.

Parameter Description

Action Name Name of a build action. It can be customized.

Tool Version Select a tool version.

Commands Configure the build commands.
● You can use the default commands to pack the file into

an .egg file.
● For Python 2.7 or later, it is advised to use python

setup.py sdist bdist_wheel to pack the source code
package and .whl installation package for pip
installation.

 

6.2.14 Build with PyInstaller
Build a Python project with PyInstaller.

Configuration Description

Add Build with PyInstaller, when configuring build actions.

The parameters are described in the following table.

Parameter Description

Action Name Name of a build action. It can be customized.

Tool Version Select a tool version.

Commands Configure the build packaging command. The default
command is to package the project into an executable file.
For details about the PyInstaller command, visit the
PyInstaller website for official documentation.

 

CodeArts Build
User Guide 6 Configuring Build Actions

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 26

https://www.python.org/search/?q=setup&submit=
https://www.python.org/search/?q=setup&submit=


6.2.15 Run Shell Commands
Add Run Shell Commands, when configuring build actions.

The parameters are described in the following table.

Parameter Description

Action Name Name of a build action. It can be customized.

Tool Version Select a tool version.

Commands Enter the command as required.

 

6.2.16 Build with GNU Arm
Design, develop, and use an Arm simulator with the GNU Arm embedded
toolchain.

Configuration Description
Add Build with GNU Arm, when configuring build actions.

The parameters are described in the following table.

Parameter Description

Action Name Name of a build action. It can be customized.

Tool Version Select an Arm tool version.

CodeArts Build
User Guide 6 Configuring Build Actions

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 27



Parameter Description

Commands Configure the GNU Arm commands. You can also use
default commands.
● If Makefile is not in the root directory of the code, run

the cd command to access the correct directory and
then run the make command.

● If you do not want to run the make command, you can
refer to the build commands provided by the following
images:
– gnuarm201405 image

Use the arm-none-linux-gnueabi-gcc command, for
example, arm-none-linux-gnueabi-gcc -o main
main.c.

– gnuarm-linux-gcc-4.4.3 image
Use the arm-linux-gcc command, for example, arm-
linux-gcc -o main main.c.

– gnuarm-7-2018-q2-update image
Use the arm-none-eabi-gcc command, for example,
arm-none-eabi-gcc --specs=nosys.specs -o main
main.c.

NOTE
● For details about how to write the GNU makefile in Linux, see

the official website.
● Makefile contains only line comment tags (#). If you want to

use or output the number sign (#), escape the number sign, for
example, using \#.

 

6.2.17 Build with CMake
Build a cross-platform project with CMake.

Configuration Description

Add Build with CMake, when configuring build actions.

The parameters are described in the following table.

Parameter Description

Action Name Name of a build action. It can be customized.

Tool Version Select the CMake build tool version.

Commands Configure the CMake commands. You can also use default
commands. If there are special build requirements, you can
enter your custom build script in the text box.

 

CodeArts Build
User Guide 6 Configuring Build Actions

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 28

https://www.gnu.org/software/make/manual/make.html


6.2.18 Build with Ant
Apache Ant is a tool used to compile, test, and deploy Java projects.

Prerequisites

The project is in the Ant structure using the Java language, and a correct build
description file build.xml is available.

Configuration Description

Add Build with Ant, when configuring build actions.

The parameters are described in the following table.

Parameter Description

Action Name Name of a build action. It can be customized.

Tool Version The recommended version is used by default. You can
select the Ant and JDK image versions that match your
compilation environment.

Commands Configure the Ant commands. You can also use default
commands. If there are special build requirements, you can
enter your custom build script in the text box.

 

6.2.19 Build with Go
Build a Go project.

Prerequisites

The project is developed using the Go language, and the build description file
exists in the code.

Configuration Description

Add Build with Go, when configuring build actions.

The parameters are described in the following table.

Parameter Description

Action Name Name of a build action. It can be customized.

Tool Version Select a tool version. The recommended version has been
selected by default. You can select the Go version that
matches your build environment.

CodeArts Build
User Guide 6 Configuring Build Actions

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 29



Parameter Description

Commands Configure the Go project build command. You can also use
default commands. If there are special build requirements,
enter a customized build script in the text box.

 

6.2.20 Build Android Quick App
Use the npm config set xxx command.

Configuration Description
Add Build Android Quick App, when configuring build actions.

The parameters are described in the following table.

Parameter Description

Action Name Name of a build action. It can be customized.

Tool Version Select a build tool version.

Commands Configure commands. The following is an example of using
the debug signature for packing.
To sign a quick app, perform the following steps:
1. Run the openssl command to generate the signature

files private.pem and certificate.pem. Example:
openssl req -newkey rsa:2048 -nodes -keyout private.pem -x509 -days 
3650 -out certificate.pem
Create the release directory in the sign directory of the
project and copy the private key file private.pem and
certificate file certificate.pem to the directory.

2. Before releasing the program package, add the release
signature and run the following command in the root
directory of the project:
npm run release 
The generated application directory is /dist/.release.rpk.

3. To temporarily use the debug signature, run the
following command:
npm run release -- --debug 

NOTE
The debug signature is open and not necessarily secure.
Therefore, do not use the debug signature to sign an
application to be officially released.

 

6.2.21 Creating Images and Pushing to SWR
CodeArts Build provides a large number of default build actions and templates. If
necessary dependency packages and tools are missing, you can create an image
from a Dockerfile and push it to the specified repository in SWR.

CodeArts Build
User Guide 6 Configuring Build Actions

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 30



This document uses Maven build as an example.

Prerequisites
● You have created an organization in SWR. For details about organization

restrictions, see Notes and Constraints.
● You have created a code repository by using system template Java Maven

Demo. For details, see Creating a Repository Using a Template.
● You have customized a build environment and upload the Dockerfile and

other files required for image creation to the root directory of the code
repository.

Configuration Description
Add Build Image and Push to SWR after Build with Maven, when configuring
build actions.

In the Build with Maven action, retain default values of the parameters. In the
Build Image and Push to SWR action, set the parameters as described in the
following table.

Parameter Description

Action Name Name of a build action. It can be customized.

Tool Version Select the tool version. You can also use the default version.

Image Repository By default, CodeArts Build provides the SWR repository
address of each region. You do not need to change the
address.
NOTE

Images can be pushed to custom image repositories.

Authorized User Current user. Ensure that you have the permissions to edit
or manage all images in the organization. For details, see
User Permissions.

Organization Enter the organization name of the SWR repository created
in Prerequisites.

Image Name Name of the created image, which can be customized.

Image Tag Specify the image tag, which can be customized. You can
use Image name:Tag to uniquely specify an image.

Working Directory The context path parameter in the docker build command
is the relative path of the root directory of the CodeArts
Repo code repository.
Context path: When Docker builds an image, the docker
build command packs all content in the path and sends it
to the container engine to help build the image.

CodeArts Build
User Guide 6 Configuring Build Actions

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 31

https://support.huaweicloud.com/eu/usermanual-swr/swr_01_0014.html
https://support.huaweicloud.com/eu/productdesc-swr/swr_03_0007.html
https://support.huaweicloud.com/eu/usermanual-codeartsrepo/codeartsrepo_03_0020.html
https://support.huaweicloud.com/eu/usermanual-swr/swr_01_0015.html


Parameter Description

Dockerfile Path Path of the Dockerfile. Set this parameter to a path relative
to the working directory. For example, if the working
directory is a root directory and the Dockerfile is in the root
directory, set this parameter to ./Dockerfile.

Add Build
Metadata to
Image

Add the build information to the image. After the image is
created, run the docker inspect command to view the
image metadata.

 

6.2.22 Using SWR Public Images

Prerequisites
You have created an image and push it to SWR.

Procedure

Step 1 Images in SWR cannot be pulled during building. Therefore, you need to set the
image type to Public.

1. Log in to SWR.
2. In the navigation pane, choose My Images, click the image name to go to the

image details page, and click Edit in the upper right corner.
3. In the dialog box, set the type to be public.

4. To obtain the complete image path, click  to copy the image download
command. The part following docker pull is the image path.

Step 2 Add Use SWR Public Image, when configuring build actions.

CodeArts Build
User Guide 6 Configuring Build Actions

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 32

https://console.eu.huaweicloud.com/swr/?locale=en-us


Step 3 Paste the image address obtained in step 1 to the text box.

NO TE

When pasting the download command to the image address text box, delete docker pull.

Step 4 Enter the build commands in the command window and run the build task
commands to complete the build.

----End

6.2.23 Uploading Software Packages to Release Repos
To upload generated software packages to release repos, add Upload to Release
Repos when configuring build actions.

NO TE

When you choose Windows executors, add action Upload Software Package to Release
Repos (Windows).

● Only one or more files can be uploaded. Folders cannot be uploaded and
directories cannot be automatically created.
For example, the a directory contains the aa file and b directory that contains
the bb file, and the build package directory is set to a/**.
When the a directory is scanned, both aa and bb will be uploaded to the
same directory, and the system will not create a b directory in release repos.

● To upload a folder, package it before adding the Upload to Release Repos
action. You can package the folder by running the packaging command or
adding the Run Shell Commands action.

● For details about the restrictions on the uploaded software packages, see
Constraints of CodeArts Artifact.

The parameters are described in the following table.

Parameter Description

Action Name Name of a build action. It can be customized.

CodeArts Build
User Guide 6 Configuring Build Actions

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 33

https://support.huaweicloud.com/eu/productdesc-cloudartifact/cloudartifact_07_0002.html


Parameter Description

Package Location Directory for storing the build result. A regular expression is
supported. Example: **/target/*.?ar uploads all JAR and
WAR packages built with Maven.

Version Directory for storing the build package in a release repo.
Leave this blank to use the build ID for the directory
(recommended).

Package Name New name for files uploaded to the release repo. Leave this
parameter blank to use the original file names
(recommended).

 

Parameter Settings
● Build Package Directory

The build package directory supports regular expression matching. ** means
that the system recursively traverses the current directory. * indicates zero or
multiple characters. ? indicates one character.
The system file separator is a slash /, and the path is case-insensitive.
Examples:
– *.class

Matches files whose names end with .class in the current directory.
– **/*.class

Recursively matches all files whose names end with .class in the current
directory.

– test/a??.java
Matches Java files whose names start with a followed by two characters
in the test directory.

– **/test/**/XYZ*
Recursively matches all files whose parent directory is test and whose
names start with XYZ, for example, abc/test/def/ghi/XYZ123.

● Release Version and Package Name
Leave Package Name unspecified so that all files matching the build package
directory can be uploaded.
After the package name is set, overwriting may occur if multiple files are
matched. If the package name needs to be set and multiple files need to be
uploaded, add the uploading action for multiple times.
The figure below illustrates the impact of an unspecified release version and
package name on uploads.

CodeArts Build
User Guide 6 Configuring Build Actions

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 34



6.2.24 Uploading Files to OBS
For details about the restrictions on using OBS, see Restrictions and Limitations.

Configuration Description
Add Upload Files to OBS, when configuring build actions.

The parameters are described in the following table.

Parameter Description

Action Name Name of a build action. It can be customized.

Authorized
Account

● Current: Upload files to an OBS bucket of the current
account.

● Other: Upload files to an OBS bucket of a specific
account by using an IAM account.

Build Directory Directory for storing build results. If no file name is
specified for OBS storage, use wildcard characters to
upload multiple files. Example: **/target/*.?ar uploads all
JAR and WAR packages built with Maven.

Bucket Name Name of the target OBS bucket. Cross-region upload is not
supported.

OBS Directory Directory for storing build results on OBS (for example,
application/version/). You can leave this parameter blank
or enter ./ to store build results to the OBS root directory.

File Name New name (excluding the directory) for the built file after
OBS storage. Leave it blank to upload multiple files with
their old names, or specify a name to upload a single file,
for example, application.jar.

CodeArts Build
User Guide 6 Configuring Build Actions

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 35

https://support.huaweicloud.com/eu/productdesc-obs/obs_03_0360.html


Parameter Description

Headers Add one or more custom response headers during file
upload. The headers will be included in the response to
download objects or query the object metadata. For
example, you can set the key to x-frame-options and value
to false to prevent web pages stored in OBS from being
embedded into third-party web pages.

 

6.2.25 Running Docker Commands
Add Run Docker Commands, when configuring build actions.

The parameters are described in the following table.

Parameter Description

Action Name Name of a build action. It can be customized.

Tool Version Select a tool version.

Commands Click Add to add a command, and configure the command
as required. View the Docker Docs.

 

6.2.26 Downloading Package from Release Repos
By configuring the action Download from Release Repos, you can download the
packages or other files in the release repos to the root directory of a build task so
that these packages or files can be used in subsequent build actions.

Obtaining the Download Address

Step 1 Log in to CodeArts.

Step 2 Search for the target project and click the project name. In the navigation pane,
choose Artifact > Release Repos.

Step 3 On the Release Repos page, search for the repository package to download.

CodeArts Build
User Guide 6 Configuring Build Actions

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 36

https://docs.docker.com/


Step 4 Click the name of the package. The package details page is displayed.

The repository path is the address for downloading the package. Click  to copy
the address.

----End

Configuring the Download Action

Add Download Package from Release Repos when configuring build actions.

The parameters are described in the following table.

Parameter Description

Action Name Name of a build action. It can be customized.

Tool Version Select a tool version.

Package Address Paste the package download address copied in step 4 to
the text box.

 

6.2.27 Downloading File from File Manager
File management stores Android APK signature files and the settings.xml files of
Maven build, and manages these files (For example, you can create, edit, and
delete these files, and modify users' permissions on them). For details about how
to upload files, see File Management. Add the Download File from File
Manager action to download files from Files to the working directory for use.

Configuration Description

Add Download File from File Manager, when configuring build actions.

The parameters are described in the following table.

CodeArts Build
User Guide 6 Configuring Build Actions

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 37



Parameter Description

Action Name Name of a build action. It can be customized.

Tool Version Select a tool version.

File Name ● Select an uploaded file from the drop-down list.
● Click Upload to upload a local file to File Manager.
● Click Manage Files to manage files on the Files page.

 

6.3 Code-based Build

6.3.1 Configuring a Task

6.3.1.1 Introducing the YAML File Structure

YAML File Example
In this example, the Maven build template is executed using the YAML file.

version: 2.0 # The value must be 2.0.
params: # Build parameters, which can be referenced during a build.
  - name: paramA
    value: valueA
  - name: paramB
    value: valueB
env: # This parameter is optional but has the highest priority. The host specifications and type (if any) 
defined here will be used instead of those you configured on the basic information page for a task.
  resource:
    type: docker # The agent pool type can be: Docker, Linux, macOS or custom ones.
    arch: X86 # The host type of the build environment can be: x86 or Arm.
    class: 8 vCPUs | 16 GB # The specification can be: 2 vCPUs | 8 GB, 4 vCPUs | 8 GB, 8 vCPUs | 16 GB, 16 
vCPUs | 32 GB, or 16 vCPUs | 64 GB. This parameter is not required when the agent pool type is set to a 
custom one.
    pool: Mydocker # Agent pool name. This parameter is required when the agent pool type is set to a 
custom one.
steps:
  PRE_BUILD:
    - checkout:
        name: Download Code # This field is optional.
       inputs: # Action parameters
          scm: codehub # Code source: Repo only
          url: xxxxxxxxx # SSH address for the URL to pull code
          branch: ${codeBranch} # Pulled code branch, which can be parameterized.
    - sh:
        inputs:
          command: echo ${paramA}
  BUILD:
    - maven: # Action keyword. Only specified keywords are supported.
    name: maven build # Optional
    image: xxx # You can customize the image path. For details, see the following description.
    inputs:
      command: mvn clean package
    - upload_artifact:
    inputs:
          path: "**/target/*.?ar"

The .yml file consists of four parts:

CodeArts Build
User Guide 6 Configuring Build Actions

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 38



● Version: In the example file, version is set to 2.0. The version number is
mandatory and unique.

● Build environment (env): The sample file defines the resource pool type, build
environment host type, and host specifications.

● Build parameters (params): Optional. paramA and paramB are defined in the
sample file and can be referenced during the build process. Build parameters
created during task configuration are preferentially used.

● Build actions (steps): In the example file, there are three phases under the
steps level:

– PRE_BUILD: used to prepare for building, for example, downloading code
and executing shell.

– BUILD: used to build mainstream projects such as Maven, npm, Go,
Python, Ant, CMake, Mono, sbt, Android and Bazel. After the build is
complete, you can define post-build operations, such as creating images
and uploading them to SWR, uploading files to OBS, downloading files,
uploading binary packages to the specified repository, downloading
binary packages, and running Docker commands.

NO TE

● After the build.yml file is defined, strictly comply with the file storage path rules
and place the build.yml file in the .cloudbuild path.

● The image can be in either of the following formats:

● cloudbuild@maven3.5.3-jdk8-open, which starts with cloudbuild, uses @ as
the separator, and is followed by the default image provided by CodeArts
Build.

● Complete SWR image path, for example, swr.example.example.com/
codeci_test/demo:141d26c455abd6d7xxxxxxxxxxxxxxxxxxxx.

Build Procedure

In steps, there are two phases: PRE_BUILD and BUILD. Each phase can define a
series of build steps. For details, see the following table.

PRE_BUILD Description Operation Guide

- checkout Download code Using YAML to Configure
Code Download

CodeArts Build
User Guide 6 Configuring Build Actions

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 39



PRE_BUILD Description Operation Guide

- sh Run Shell commands Using YAML to Configure
and Execute Shell
Commands

 

BUILD Description Operation Guide

- maven Build with Maven Using YAML to Configure
a Maven Build

- npm Build with npm Using YAML to Configure
an npm Build

- go Use Go for build Using YAML to Configure
a Build with Go

- python Use Python for build Using YAML to Configure
a Python Build

- gradle Build with Gradle Using YAML to Configure
a Gradle Build

- ant Build with Ant Using YAML to Configure
an Ant Build

- cmake Build with CMake Using YAML to Configure
a CMake Build

- mono Build with Mono Using YAML to Configure
a Mono Build

- sbt Build with sbt Using YAML to Configure
an sbt Build

- android Build with Android Using YAML to Configure
an Android Build

- bazel Build with Bazel Using YAML to Configure
a Bazel Build

- build_image Create container
images and upload
them to SWR

Using YAML to Create an
Image and Upload It to
SWR

- upload_obs Upload a file to OBS Using YAML to Upload
Files to OBS

- download_file Download a file Using YAML to Download
Files

- upload_artifact Upload the binary
package to the
repository

Using YAML to Upload
Binary Packages to a
Repository

CodeArts Build
User Guide 6 Configuring Build Actions

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 40



BUILD Description Operation Guide

- download_artifact Download the binary
package

Using YAML to Download
Binary Packages

- docker Run Docker commands Using YAML to Run
Docker Commands

 

6.3.1.2 Using YAML for Build

Prerequisites
● A project is available. If no project is available, create one.
● A code repository has been created in the project. If no code repository is

available, create one.
● In the code repository, create the .cloudbuild directory and store the YAML

file in the directory. For details about how to write the YAML file and its
specifications, see Introducing the YAML File Structure.

NO TE

If the YAML file is not stored in the .cloudbuild directory, you can use
CB_BUILD_YAML_PATH to specify the path of the YAML file in the code repository.

Selecting a Code Source
1. Log in to the CodeArts Build homepage.
2. Click Create Task. The Basic Information page is displayed.
3. Select Repo as the source code source and configure the source code

repository and branch to be used.

CodeArts Build
User Guide 6 Configuring Build Actions

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 41

https://support.huaweicloud.com/eu/qs-projectman/projectman_qs_1000.html
https://support.huaweicloud.com/eu/usermanual-codeartsrepo/codeartsrepo_03_0017.html


Configuring and Executing the YAML Build Task
1. Click Next. The Build Template page is displayed.

2. Select Blank Template and click Next.

Or select a recommended template. This does not affect the YAML build.

3. Go to the Build Actions tab page. In the upper left corner, select the Code
tab.

You can modify the YAML file here. The system automatically reads the YAML
file in the code repository and branch configured when you select a code
source.

4. After the configuration, click Create in the upper right corner.

5. Click Create and Run. Changes to the YAML file take effect and the YAML
build task file is executed. After the build script is submitted, the original
build.yml file is overwritten.

6.3.1.3 Using YAML to Configure Code Download

The following configurations are for your reference.

version: 2.0 # The value must be 2.0.
steps:
  PRE_BUILD:
    - checkout:
        name: checkout
        inputs:
          scm: codehub # Code source: Repo and open source
          url: xxxxxxxxx # SSH address for the URL to pull code
          branch: ${codeBranch} # Mandatory at any time and can be parameterized.
          commit: ${commitId}
          lfs: true
          submodule: true
          depth: 100
          tag: ${tag}
          path: test

The parameters are described in the following table.

Param
eter

Typ
e

Description Man
dato
ry

Default
Value

scm strin
g

Code source. Currently, only CodeArts
Repo is supported. If this parameter is
not configured in the YAML file, the
code repository information configured
in build task is used.

No codehub

url strin
g

SSH address for pulling code Yes None

branch strin
g

Pulled code branch, which can be
parameterized.

Yes None

commi
t

strin
g

Commit ID obtained during builds can
be parameterized.

No None

CodeArts Build
User Guide 6 Configuring Build Actions

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 42



Param
eter

Typ
e

Description Man
dato
ry

Default
Value

tag strin
g

Tag pulled during tag builds: It can be
parameterized. If a commit ID and a tag
exist at the same time, the build based
on a commit ID is executed first.

No None

depth int Shallow clone depth. When a commit ID
is specified for builds, depth must be
greater than or equal to the depth of
the commit ID.

No 1

submo
dule

bool Whether to pull the submodule. The
options are true (pull) and false (not
pull).

No false

lfs bool Whether to enable Git LFS: If this
parameter is set to true, Git LFS pull is
executed.

No false

path strin
g

Subpath for cloning: The code is
downloaded to the subpath.

No None

 

6.3.1.4 Using YAML to Configure Manifest File Download from Repositories
In scenarios such as Android and Harmony, hundreds or even thousands of code
repositories need to be integrated at the same time during one build. The
integration and download efficiency of multiple code repositories is critical.

CodeArts Build has integrated the CodeArts Repo download tool. You only need to
perform simple configurations to download multiple code repositories. Currently,
Repo and Gerrit are supported.

The following configurations are for your reference.

version: 2.0 # The value must be 2.0.
steps:
  PRE_BUILD:
  - manifest_checkout:
      name: "manifest"
      inputs:
        manifest_url: "https://example.example.example.example.example.com/xx/manifest.git"
        manifest_branch: "master"
        manifest_file: "default.xml"
        path: "dir/dir02"
        repo_url: "https://example.example.example.example.example.com/xx/git-repo.git"
        repo_branch: "master"
        username: "someone"
        password: "${PASSWD}"

The parameters are described in the following table.

CodeArts Build
User Guide 6 Configuring Build Actions

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 43



Parame
ter

Type Description Mandator
y

Default Value

name string Step name. No manifest_checko
ut

manifes
t_url

string Specifies the manifest
repository address, including
the repository of XML files.

Yes None

manifes
t_branc
h

string Specifies a manifest branch
or revision.

No HEAD

manifes
t_file

string Manifest file path. No default.xml

path string Download path of all sub-
repositories of the
customized manifest file,
which is the relative path of
the working path.
The path cannot start with a
slash (/) and cannot contain
any period (.).

No The default
value is the
working path.

repo_url string Repo repository address. No https://
gerrit.googleso
urce.com/git-
repo

repo_br
anch

string Repo repository branch. No stable

userna
me

string Username for downloading
the repository.

No.
This
parameter
is
mandatory
when a
non-public
repository
is
downloade
d.

None

CodeArts Build
User Guide 6 Configuring Build Actions

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 44

https://gerrit.googlesource.com/git-repo
https://gerrit.googlesource.com/git-repo
https://gerrit.googlesource.com/git-repo
https://gerrit.googlesource.com/git-repo


Parame
ter

Type Description Mandator
y

Default Value

passwor
d

string HTTPS password used for
downloading the repository.

No.
This
parameter
is
mandatory
when a
non-public
repository
is
downloade
d.

None

 

NO TE

1. The repositories defined in manifest_file must be of the same source code source.
2. manifest_url and manifest_file must use the same code source. For a non-public

repository, username and password must have the download permission.
3. The repo repository corresponding to repo_url must have the download permission (the

repository is open-source, or the repository is private but configured with an account
and password).

4. If the values of the preceding optional parameters are empty, the default values are
used.

5. When a non-public repository is used, you are advised to configure the username and
password using the constructed private parameters. For details, see Parameter Settings.

6.3.1.5 Using YAML to Configure and Execute Shell Commands
version: 2.0 # The value must be 2.0.
steps:
  PRE_BUILD:
    - sh:
        inputs:
          command: echo ${a}

The parameters are described in the following table.

Parame
ter

Type Description Mand
atory

Default Value

comma
nd

string Execute commands. Yes None

 

6.3.1.6 Using YAML to Configure a Maven Build
version: 2.0 # The value must be 2.0.
steps:
  BUILD:
    - maven:
          image: cloudbuild@maven3.5.3-jdk8-open # You can customize the image path. For details, see the 
following description.

CodeArts Build
User Guide 6 Configuring Build Actions

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 45



          inputs:
            settings:
              public_repos:
                - https://mirrors.example.com/maven
            cache: true # Indicates whether to enable the cache.
            unit_test:
              coverage: true
              ignore_errors: false
              report_path: "**/TEST*.xml"
              enable: true
              coverage_report_path: "**/site/jacoco"
            command: mvn package -Dmaven.test.failure.ignore=true -U -e -X -B

NO TE

The image can be in either of the following formats:
1. cloudbuild@maven3.5.3-jdk8-open, which starts with cloudbuild, uses @ as the
separator, and is followed by the default image provided by CodeArts Build.
2. Complete SWR image path, for example, swr.example.example.com/codeci_test/
demo:141d26c455abd6d7xxxxxxxxxxxxxxxxxxxx.

Configuration Description
Param
eter

Type Description Man
dator
y

Default
Value

setting
s

map Setting for Maven builds. No None

cache bool Whether to enable cache. No false

comma
nd

strin
g

Execute commands. Yes None

unit_te
st

map Unit test. No None

 

Parameters for unit_test are described in the following table.

Parameter Type Description Man
dator
y

Default
Value

enable bool Whether to process test data. No true

ignore_errors bool Whether to ignore unit test
errors.

No true

report_path Strin
g

Unit test data path. Yes None

converage bool Whether to process coverage
data.

No false

CodeArts Build
User Guide 6 Configuring Build Actions

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 46



Parameter Type Description Man
dator
y

Default
Value

coverage_repo
rt_path

strin
g

Coverage data path. No None

 

6.3.1.7 Using YAML to Configure an npm Build
version: 2.0 # The value must be 2.0.
steps:
  BUILD:
    - npm: 
        inputs: 
          command: |
              export PATH=$PATH:~/.npm-global/bin
              npm config set registry https://repo.example.com/repository/npm/
              npm config set disturl https://repo.example.com/nodejs
              npm config set sass_binary_site https://repo.example.com/node-sass/
              npm config set phantomjs_cdnurl https://repo.example.com/phantomjs
              npm config set chromedriver_cdnurl https://repo.example.com/chromedriver
              npm config set operadriver_cdnurl https://repo.example.com/operadriver
              npm config set electron_mirror https://repo.example.com/electron/
              npm config set python_mirror https://repo.example.com/python
              npm config set prefix '~/.npm-global'
              npm install --verbose
              npm run build

Param
eter

Type Description Man
dato
ry

Default
Value

comm
and

strin
g

Execute commands. Yes None

 

6.3.1.8 Using YAML to Configure a Yarn Build
version: 2.0 # The value must be 2.0.
steps:
  BUILD:
    - yarn:
       inputs:
          command: |-
    #If the Node.js version is earlier than 18, the settings can be as follows:
            npm config set cache-folder /yarncache
            npm config set registry http://mirrors.tools.huawei.com/npm/
            npm config set disturl http://mirrors.tools.huawei.com/nodejs
            npm config set sass_binary_site http://mirrors.tools.huawei.com/node-sass/
            npm config set phantomjs_cdnurl http://mirrors.tools.huawei.com/phantomjs
            npm config set chromedriver_cdnurl http://mirrors.tools.huawei.com/chromedriver
            npm config set operadriver_cdnurl http://mirrors.tools.huawei.com/operadriver
            npm config set electron_mirror http://mirrors.tools.huawei.com/electron/
            npm config set python_mirror http://mirrors.tools.huawei.com/python
            
            #If the Node.js version is 18 or later, the settings can be as follows:
             #npm config set registry http://mirrors.tools.huawei.com/npm/ 
             npm config set prefix '~/.npm-global'
            export PATH=$PATH:~/.npm-global/bin
            #yarn add node-sass-import --verbose
            yarn install --verbose

CodeArts Build
User Guide 6 Configuring Build Actions

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 47



            yarn run build
            tar -zcvf demo.tar.gz ./**

Param
eter

Typ
e

Description Man
dato
ry

Default
Value

comm
and

strin
g

Execute commands. Yes None

 

6.3.1.9 Using YAML to Configure a Build with Go
version: 2.0 # The value must be 2.0.
steps:
  BUILD:
    - go: 
        inputs: 
          command: |
            export GO15VENDOREXPERIMENT=1 
            export GOPROXY=https://goproxy.cn 
            mkdir -p $GOPATH/src/example.com/demo/ 
            cp -rf . $GOPATH/src/example.com/demo/ 
            go install example.com/demo 
            cp -rf $GOPATH/bin/ ./bin

Param
eter

Typ
e

Description Man
dato
ry

Default
Value

comm
and

strin
g

Execute commands. Yes None

 

6.3.1.10 Using YAML to Configure a Build with Gulp
version: 2.0 # The value must be 2.0.
steps:
  BUILD:
    - gulp:
       inputs:
          command: |-
            export PATH=$PATH:~/.npm-global/bin
            npm config set registry http://mirrors.tools.huawei.com/npm/
            npm config set prefix '~/.npm-global'
            #If node-sass needs to be installed:
            #npm config set sass_binary_site https://repo.huaweicloud.com/node-sass/
            #npm install node-sass
            #Load dependencies.
            npm install -verbose
            gulp

Param
eter

Type Description Man
dato
ry

Default
Value

comm
and

strin
g

Execute commands. Yes None

 

CodeArts Build
User Guide 6 Configuring Build Actions

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 48



6.3.1.11 Using YAML to Configure a Build with Grunt
version: 2.0 # The value must be 2.0.
steps:
  BUILD:
    - grunt:
           inputs:
              command: |-
                npm config set registry http://7.223.219.40/npm/
                #npm cache clean -f
                #npm audit fix --force
                npm install --verbose
                grunt
                npm run build

Param
eter

Type Description Man
dato
ry

Default
Value

comm
and

strin
g

Execute commands. Yes None

 

6.3.1.12 Using YAML to Configure a PHP Build
version: 2.0 # The value must be 2.0.
steps:
  BUILD:
    - php:
       inputs:
          command: |-
            composer config -g secure-http false
            composer config -g repo.packagist composer http://mirrors.tools.huawei.com/php/
            composer install
            tar -zcvf php-composer.tgz *

Param
eter

Type Description Man
dato
ry

Default
Value

comm
and

strin
g

Execute commands. Yes None

 

6.3.1.13 Using YAML to Configure a Build with GNU Arm
version: 2.0 # The value must be 2.0.
steps:
  BUILD:
    - gnu_arm:
       inputs:
          command: make

Param
eter

Type Description Man
dato
ry

Default
Value

comm
and

strin
g

Execute commands. Yes None

 

CodeArts Build
User Guide 6 Configuring Build Actions

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 49



6.3.1.14 Using YAML to Configure a Build with Setuptools
version: 2.0 # The value must be 2.0.
steps:
  BUILD:
    - python: 
        name: Build with Setuptools
        image: cloudbuild@python3.6
        inputs: 
          command: |
            pip config set global.index-url https://pypi.org/simple
            pip config set global.trusted-host repo.xxcloud.com
            python setup.py bdist_egg

Param
eter

Type Description Man
dato
ry

Default
Value

name / Name of a build action. It can be
customized.

No None

image / Image version. cloudbuild@ is a fixed
part, followed by the supported Python
version. You can view the tool versions
supported for Build with Setuptools in
the graphical build mode.

No cloudbuild@
python3.6

comm
and

strin
g

Execute commands and enter required
code.

Yes None

 

6.3.1.15 Using YAML to Configure a Build with PyInstaller
version: 2.0 # The value must be 2.0.
steps:
  BUILD:
    - python: 
        name: Build with PyInstaller
        image: cloudbuild@python3.6
        inputs: 
          command: |
            pip config set global.index-url https://pypi.org/simple
            pip config set global.trusted-host repo.xxcloud.com
            # Create a single executable file in the dist directory with -F.
            # For command details, see https://pyinstaller.readthedocs.io/en/stable/usage.html.
            pyinstaller -F  *.py

Param
eter

Type Description Man
dato
ry

Default
Value

name / Name of a build action. It can be
customized.

No None

image / Image version. cloudbuild@ is a fixed
part, followed by the supported Python
version. You can view the tool versions
supported in Build with PyInstaller in
the graphical build mode.

No cloudbuild@
python3.6

CodeArts Build
User Guide 6 Configuring Build Actions

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 50



Param
eter

Type Description Man
dato
ry

Default
Value

comm
and

strin
g

Execute commands and enter required
code.

Yes None

 

6.3.1.16 Using YAML to Configure a Python Build
version: 2.0 # The value must be 2.0.
steps:
  BUILD:
    - python: 
        inputs: 
          command: |
              pip config set global.index-url https://pypi.org/simple             
              pip config set global.trusted-host repo.xxcloud.com                      
              python setup.py bdist_egg

Param
eter

Type Description Man
dato
ry

Default
Value

comm
and

strin
g

Execute commands. Yes None

 

6.3.1.17 Using YAML to Configure a Gradle Build
version: 2.0 # The value must be 2.0.
steps:
  BUILD:
    - gradle:
        inputs:
            gradle: 4.8
            jdk: 1.8
            command: |
                # Gradle Wrapper provided by CodeArts and cache are used for acceleration.
                cp /cache/android/wrapper/gradle-wrapper.jar ./gradle/wrapper/gradle-wrapper.jar
                # Build an unsigned APK.
                /bin/bash ./gradlew build --init-script  ./.codeci/.gradle/init_template.gradle -
Dorg.gradle.daemon=false -Dorg.gradle.internal.http.connectionTimeout=800000

Para
meter

Type Description Mand
atory

Default
Value

comm
and

string Execute commands. Yes None

gradle string Gradle version. Yes None

jdk string JDK version. Yes None

 

6.3.1.18 Using YAML to Configure an Ant Build
version: 2.0 # The value must be 2.0.
steps:

CodeArts Build
User Guide 6 Configuring Build Actions

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 51



  BUILD:
    - ant:
        inputs:
          command:  ant -f build.xml

Para
meter

Type Description Man
dato
ry

Default
Value

comm
and

string Execute commands. Yes None

 

6.3.1.19 Using YAML to Configure a CMake Build
version: 2.0 # The value must be 2.0.
steps:
  BUILD:
    - cmake:
        inputs:
            command: |
                # Create the build directory and switch to the build directory.
                mkdir build && cd build 
                # Generate makefiles for the Unix platform and perform the build.
                cmake -G 'Unix Makefiles' ../ && make -j
 

Param
eter

Type Description Mand
atory

Default
Value

comm
and

string Execute commands. Yes None

 

6.3.1.20 Using YAML to Configure a Mono Build
version: 2.0 # The value must be 2.0.
steps:
  BUILD:
    - mono:
        inputs:
            command: |
                nuget sources Disable -Name 'nuget.org' 
                nuget sources add -Name 'xxcloud' -Source 'https://repo.xxcloud.com/repository/nuget/v3/
index.json' 
                nuget restore
                msbuild /p:OutputPath=../buildResult/Release/bin
                zip -rq ./archive.zip ./buildResult/Release/bin/*

Param
eter

Type Description Mand
atory

Default
Value

comm
and

string Execute commands. Yes None

 

6.3.1.21 Using YAML to Configure a Build with Flutter
version: 2.0 # The value must be 2.0.
steps:

CodeArts Build
User Guide 6 Configuring Build Actions

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 52



  BUILD:
    - flutter:
       inputs:
          flutter: cn-north-1
          jdk: '3333'
          ndk: '23.1.7779620'
          command: ./instrumented.apk

Parameter Type Description Man
dato
ry

Default
Value

flutter string Region name. Yes None

jdk string JDK file name. Yes None

ndk string NDK file name. Yes None

command string Execute commands. Yes None

 

6.3.1.22 Using YAML to Configure an sbt Build
version: 2.0 # The value must be 2.0.
steps:
  BUILD:
    - sbt:
        inputs:
            command: |
                sbt package

Param
eter

Type Description Man
dator
y

Default
Value

comm
and

string Execute commands. Yes None

 

6.3.1.23 Using YAML to Configure an Android Build
version: 2.0 # The value must be 2.0.
steps:
  BUILD:
    - android:
        inputs:
          gradle: 4.8 
          jdk: 1.8
          ndk: 17
          command: | 
            cat ~/.gradle/init.gradle
            cat ~/.gradle/gradle.properties
            cat ~/.gradle/init_template.gradle
            rm -rf ~/.gradle/init.gradle
            rm -rf /home/build/.gradle/init.gradle
            # Gradle Wrapper provided by CodeArts and cache are used for acceleration.
            cp /cache/android/wrapper/gradle-wrapper.jar ./gradle/wrapper/gradle-wrapper.jar
            # Build an unsigned APK.
            /bin/bash ./gradlew assembleDebug -Dorg.gradle.daemon=false -d --stacktrace

CodeArts Build
User Guide 6 Configuring Build Actions

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 53



Param
eter

Type Description Man
dato
ry

Default
Value

comm
and

string Execute commands. Yes None

gradle string Gradle version. Yes None

jdk string JDK version. Yes None

ndk string NDK version. Yes None

 

6.3.1.24 Using YAML to Sign Android APK
version: 2.0 # The value must be 2.0.
steps:
  BUILD:
    - android_sign:
        inputs:
           file_path: build/bin/*.apk
           keystore_file: androidapk.jks
           keystore_password: xxxxxx
           alias: keyalias
           key_password: xxxxxx
           apksigner_commond: --verbose

Parameter Type Description Man
dato
ry

Default
Value

file_path string APK directory. Yes None

keystore_file string Keystore file name. Yes None

alias string Alias. Yes None

apksigner_c
ommond

string apksigner CLI. Yes None

 

6.3.1.25 Using YAML to Inject an APM Probe into an Android App
version: 2.0 # The value must be 2.0.
steps:
  BUILD:
    - apm_probe:
       inputs:
          region: cn-north-1
          app_id: '3333'
          path: app/build/outputs/apk/app-debug.apk
          output_path: ./instrumented.apk

Parameter Type Description Man
dato
ry

Default
Value

region string Region name. Yes None

CodeArts Build
User Guide 6 Configuring Build Actions

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 54



Parameter Type Description Man
dato
ry

Default
Value

app_id string App ID. Yes None

path string APK location before injection. Yes None

path string APK location after injection. Yes None

 

6.3.1.26 Using YAML to Build an Android Quick App
version: 2.0 # The value must be 2.0.
steps:
  BUILD:
    - quick_app:
       inputs:
          command: |-
            npm config set registry http://7.223.219.40/npm/
             # Load dependencies.
            npm install --verbose
            # Build an app with the default settings.
            npm run build

Param
eter

Type Description Ma
nd
ato
ry

Default
Value

comm
and

strin
g

Execute commands. Yes None

 

6.3.1.27 Using YAML to Configure a Bazel Build
version: 2.0 # The value must be 2.0.
steps:
  BUILD:
    - bazel: 
        inputs: 
          command: |
              cd java-maven
              bazel build //:java-maven_deploy.jar
              mkdir build_out
              cp -r  bazel-bin/*  build_out/

Param
eter

Type Description Ma
nd
ato
ry

Default
Value

comm
and

strin
g

Execute commands. Yes None

 

CodeArts Build
User Guide 6 Configuring Build Actions

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 55



6.3.1.28 Using YAML to Configure a Build with Grails
version: 2.0 # The value must be 2.0.
steps:
  BUILD:
    - grails:
       inputs:
          command: grails war

Parameter Type Description Man
dato
ry

Default
Value

command string Execute commands. Yes None

 

6.3.1.29 Using YAML to Build an Android App with Ionic
version: 2.0 # The value must be 2.0.
steps:
  BUILD:
    - ionic_android_app:
       inputs:
          gradle: '4.8'
          jdk: '3333'
          ndk: '17'
          command: ./instrumented.apk

Parameter Type Description Man
dato
ry

Default
Value

gradle string Gradle version. Yes None

jdk string JDK file name. Yes None

ndk string NDK file name. Yes None

command string Execute commands. Yes None

 

6.3.1.30 Using YAML to Configure a Fortran Build
version: 2.0 # The value must be 2.0.
steps:
  BUILD:
    - fortran:
       inputs:
          command: |-
            gfortran -c -fpic helloworld.f90
            gfortran -shared -o helloworld.so helloworld.o

Parameter Type Description Man
dato
ry

Default
Value

command string Execute commands. Yes None

 

CodeArts Build
User Guide 6 Configuring Build Actions

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 56



6.3.1.31 Using YAML to Configure a Build with MSBuild
version: 2.0 # The value must be 2.0.
steps:
  BUILD:
    - msbuild:
       inputs: 
          command: |-
            nuget sources Disable -Name 'nuget.org'
            nuget sources Disable -Name 'myget'
            nuget sources Disable -Name 'huawei'
            nuget sources add -Name 'huaweicloud' -Source 'http://mirrors-devcloud.rnd.huawei.com/
repository/nuget/v3/index.json'
            nuget restore 
            msbuild /p:OutputPath=../buildResult/Release/bin 
            powershell -Command Compress-Archive -Path ./buildResult/Release/bin/* -DestinationPath ./
archive.zip

Parameter Type Description Man
dato
ry

Default
Value

command string Execute commands. Yes None

 

6.3.1.32 Using YAML to Create an Image and Upload It to SWR
Before uploading an image to SWR, learn about the Notes and Constraints of
SWR.

version: 2.0 # The value must be 2.0.
steps:
  BUILD:
    - build_image:
        name: buildImage
        inputs:
          regions: ["x-x-x", "x-x-xxx"]
          organization: codeci_test
          image_name: demo
          image_tag: ${GIT_COMMIT}
          dockerfile_path: dockerfile/Dockerfile
          # set_meta_data: true

Paramete
r

Type Description Mand
atory

Default
Value

regions list Select the regional SWR to be
uploaded. By default, the file is
uploaded to SWR in the region where
the current task is located.

No None

organizati
on

string Upload to the SWR organization. Yes None

image_na
me

string Image name. No demo

image_ta
g

string Image tag. No v1.1

CodeArts Build
User Guide 6 Configuring Build Actions

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 57

https://support.huaweicloud.com/eu/productdesc-swr/swr_03_0007.html


Paramete
r

Type Description Mand
atory

Default
Value

context_p
ath

string Docker context path. No .

dockerfile
_path

string Path of the dockerfile relative to
context_path.

No ./
Dockerfile

set_meta_
data

bool Whether to add build metadata to
the image.

No false

 

6.3.1.33 Using YAML to Specify SWR Public Images
version: 2.0 # The value must be 2.0.
steps:
  BUILD:
    - swr:
       image: cloudbuild@ddd
       inputs:
          command: echo 'hello'

Parameter Type Description Man
dato
ry

Default
Value

image string Image address. No None

command string Execute commands. Yes None

 

6.3.1.34 Using YAML to Upload Files to OBS

For details about the restrictions on using OBS, see Restrictions and Limitations.

version: 2.0 # The value must be 2.0.
steps:
  BUILD:
    - upload_obs:
          inputs:
            artifact_path: "**/target/*.?ar"
            bucket_name: codecitest-obs
            obs_directory: test
          #   artifact_dest_name: ""
          #   upload_directory: true
          #   headers:
          #     x-frame-options: true
          #     test: test
          #     commit: ${commitId}

Parameter Type Description Mand
atory

Defa
ult
Valu
e

artifact_path string Path of the product to be uploaded.
Regular expressions are supported.

No bin/*

CodeArts Build
User Guide 6 Configuring Build Actions

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 58

https://support.huaweicloud.com/eu/productdesc-obs/obs_03_0360.html


Parameter Type Description Mand
atory

Defa
ult
Valu
e

bucket_name string Specifies the name of the OBS
bucket to which the file is uploaded.

Yes None

obs_directory string Path of the OBS folder to be
uploaded. By default, the file is
uploaded to the root directory of the
bucket.

No ./

artifact_dest_
name

string Name of the file uploaded to OBS.
Set this parameter when the product
needs to be renamed.

No None

upload_direct
ory

bool Whether to upload a folder. If this
parameter is set to false, all
matched products are uploaded to
obs_directory in tile mode.

No false

headers map Uploaded header information No None

 

6.3.1.35 Using YAML to Download Files
version: 2.0 # The value must be 2.0.
steps:
  BUILD:
    - download_file:
          inputs:
            name: android22.jks

Para
met
er

Typ
e

Description Ma
nd
ato
ry

Default
Value

nam
e

stri
ng

File name. Yes None

 

6.3.1.36 Using YAML to Upload Binary Packages to a Repository

For details about the restrictions on the uploaded software packages, see
Constraints of CodeArts Artifact.

version: 2.0 # The value must be 2.0.
steps:
  BUILD:
    - upload_artifact:
           inputs:
             path: "**/target/*.?ar"
             version: 2.1
             name: packageName    

CodeArts Build
User Guide 6 Configuring Build Actions

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 59

https://support.huaweicloud.com/eu/productdesc-cloudartifact/cloudartifact_07_0002.html


Para
met
er

Type Description Man
dato
ry

Default
Value

path string Directory for storing the build result. A
regular expression is supported. Example:
**/target/*.?ar uploads all JAR and WAR
packages built with Maven.

Yes None

versi
on

string Directory for storing the build package in
a release repo. Leave this blank to use
the build ID for the directory
(recommended).

No None

nam
e

string New name for files uploaded to the
release repo. Leave this parameter blank
to use the original file names
(recommended).

No None

 

6.3.1.37 Using YAML to Download Binary Packages
version: 2.0 # The value must be 2.0.
steps:
  BUILD:
    - download_artifact:
          inputs:
            url: xxxxxxxxxxxxx

Para
met
er

Type Description Mand
atory

Default
Value

url string Download URL (the download address
of the binary package in release repos).

Yes None

 

6.3.1.38 Using YAML to Run Docker Commands
version: 2.0 # The value must be 2.0.
steps:
  BUILD:
    - docker:
          inputs:
            command: |
              docker pull swr.xx-xxxxx-x.myxxcloud.com/codeci/dockerindocker:dockerindocker18.09-1.3.2

Param
eter

Type Description Man
dator
y

Default
Value

comm
and

string Each command takes up one line.
Supported docker commands: build,
tag, push, pull, login, logout, and
save.

Yes None

 

CodeArts Build
User Guide 6 Configuring Build Actions

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 60



6.3.2 Configuring Tasks

Background

A build task is the minimum unit and applies to simple service scenarios. However,
build tasks may not meet complex requirements. For example:

● A multi-repository project needs to be built on multiple machines, and the
build projects depend on each other.

● You want to split build task in a more modular and fine-grained manner and
build them in the dependency sequence.

In the preceding complex build scenarios, BuildFlow can be used to assemble
multiple dependent build tasks in directed acyclic graph (DAG) mode. BuildFlow
will concurrently build tasks based on the dependencies.

BuildFlow Overview

The following is a BuildFlow example.

version: 2.0 # The value must be 2.0.
params:
  - name: buildFlowParam
    value: buildFlowValue
buildflow:
 strategy: lazy # Defines the running policy of BuildFlow. The value can be lazy or eager.
jobs: # Build task
   - job: Job3 
     depends_on: # Define the job dependency. In the instance, Job3 depends on Job1 and Job2.
         - Job1
         - Job2
     build_ref: .cloudbuild/build3.yml # Define the YAML build script to run during a job build.
   - job: Job1
     build_ref: .cloudbuild/build1.yml
   - job: Job2
     build_ref: .cloudbuild/build2.yml

The BuildFlow contains the following key elements:

● version: version number, which is mandatory and unique. In the example file,
the value of version is 2.0.

● params: global build parameters of BuildFlow. This parameter is shared by all
jobs.

● strategy: running policy. There are two running modes. If there is no explicit
definition, the Eager mode is used by default.
– Lazy: The build of a sub-job with a higher priority is triggered first. After

the sub-job with a higher priority is successfully executed, the build of a
sub-job with a lower priority is then triggered.

NO TE

The build takes a long time but saves build resources. Therefore, you are advised
to use this method when the number of parallel jobs is insufficient.

– Eager: Trigger the build of all sub-jobs synchronously. For sub-jobs that
depend on other jobs, prepare the environment and code first and wait
until the dependent jobs are successfully built.

CodeArts Build
User Guide 6 Configuring Build Actions

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 61



NO TE

Resources may be idle, but the build time can be shortened. You are advised to
use this function when the number of concurrent requests is large enough.

● Jobs: jobs to be orchestrated. In the example file, there are three parameters
under Jobs.
– job: build task name, which can be customized.
– depends_on: build task on which the build job depends.
– build_ref: YAML build script that needs to be run during building of the

job.
In this example, three build jobs Job1, Job2, and Job3 are configured. The
build jobs share the defined parameters params, and Job3 depends on Job1
and Job2.

Introduction to BuildFlow Jobs
BuildFlow jobs are used to define jobs to be orchestrated in BuildFlow. Each job
must have a unique name as the unique identifier.

NO TE

● If sub-job A depends on sub-job B, B has a higher priority.
● Sub-jobs with the same priority are triggered synchronously.

BuildFlow jobs example:

buildflow:
  strategy: lazy
  jobs:
   - job: Job3
     depends_on:
         - Job1
         - Job2
     build_ref: .cloudbuild/build3.yml
   - job: Job1
     build_ref: .cloudbuild/build1.yml
   - job: Job2
     build_ref: .cloudbuild/build2.yml

As shown in the preceding information, Job3 depends on and has lower priority
than Job1 and Job2, which are triggered synchronously.

Introduction to BuildFlow params
BuildFlow params can define global parameters, that is, shared by all jobs.
However, in some cases, the granularity of global parameters may be too large.
You only need to define parameters on some jobs. You can also define parameters
only for some jobs. Here is an example.

buildflow:
 jobs:
   - job: Job3
     depends_on:
         - Build Job1
         - Build job2
     build_ref: .cloudbuild/build3.yml
   - job: Job1
     params:
       - name: isSubmodule

CodeArts Build
User Guide 6 Configuring Build Actions

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 62



         value: true
     build_ref: .cloudbuild/build1.yml
   - job: Job2
     params:
       - name: isSubmodule
         value: true
     build_ref: .cloudbuild/build2.yml

As shown in the preceding information, the global parameter params is not
defined in BuildFlow. Instead, the isSubmodule parameter is defined in Job1 and
Job2.

NO TE

During Build with YAML, pay attention to the parameter priority.
Runtime parameters > Parameters configured in settings of a task > Parameters defined in
the YAML file of the BuildFlow sub-jobs > Parameters defined in the job in the YAML file of
the BuildFlow parent task > Global parameters defined in the YAML file of the BuildFlow
parent task

CodeArts Build
User Guide 6 Configuring Build Actions

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 63



7 Running a Build Task

Prerequisites
You have created a build task and you have permissions to run or disable the
build task.

NO TE

● If runtime parameters have been configured for the build task and are referenced, the
parameter setting dialog box is displayed. Set the parameters as required.

Running a Task
1. Log in to the CodeArts Build homepage.

2. Search for the target build task on CodeArts Build homepage and click  to
run the task.

Disabling a Task
1. Search for the target build task.

2. Click  in the row that contains build task and choose Disable from the
drop-down list.

3. In the displayed Disable Task dialog box, enter the reason and click OK.

NO TE

● Running build tasks cannot be disabled or deleted.
● After the build task is disabled, Disabled is displayed next to the build task name.

To run the build task, click  in the row that contains the build task and choose
Enable from the drop-down list.

CodeArts Build
User Guide 7 Running a Build Task

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 64



8 Viewing a Build Task

1. Log in to the CodeArts Build homepage.
2. The build task list related to the current user is displayed, showing the

following information.

Item Description

Build Tasks Name of the project to which the build task belongs and the
build task name. You can click the project name to go to the
build list of the project and click the task name to go to the
build history page. If the build is successful, a green icon is
displayed. If the build fails, a red icon is displayed. If the build
is suspended, a yellow icon is displayed. If the build is not
completed, a light gray icon is displayed.

Last
Executed

Information such as the task executor, triggering mode,
branch of the used repository, and commit ID.

Result The latest execution results are displayed from right to left.
Green indicates that the execution is successful, blue indicates
that the execution is in progress, and red indicates that the
execution fails.

Build Time
and
Duration

Build task start time and build duration.

Operation
Click  to start builds,  to favorite tasks, and  to
expand the drop-down list (edit, clone, disable, and delete
tasks.) For details, see Build Task Operations.

 
3. Click the build task name to go to the Build History page. You can view the

latest build history. (The build records in latest 30 days are displayed by
default. You can customize the period using the date selection component in
the upper left corner of the page.)

4. Click the Dashboard tab to view the build success rate and build performance
distribution in the last seven days in a pie chart, line chart, or bar chart.

CodeArts Build
User Guide 8 Viewing a Build Task

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 65



5. Click a build ID on the Build History tab to view details, including the code
source, trigger source, build time and duration, action logs, build parameters,
and association.

– Click the code source link in the upper left corner to access the code
repository page.

– Click Download Build Package to download the package.
– Click an action node (such as Code checkout) on the left to view the

build logs.
– When viewing logs, click Full Screen in the upper right corner of the log

window to maximize the log window, click Exit Full Screen to exit the
maximized log window, click log to download all log files, and click an
action node on the left to view logs of the corresponding action.

– Click Modify or Run in the upper right corner to edit or run the build

task. Click  and clone the task, save the task as a template, view the
badge status, or disable the task.

CodeArts Build
User Guide 8 Viewing a Build Task

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 66



9 Managing and Configuring a Build Task

9.1 Editing, Deleting, Copying, and Favoriting a Build
Task

Ensure you have the required permissions before you perform operations on build
tasks.

Editing a Build Task
1. Log in to the CodeArts Build homepage.
2. Search for the target build task.
3. In the row of the target build task, click  and choose Edit from the drop-

down list.
– On the Basic Information tab page, configure the task name, code

source, source code repository, branch, and task description.
– On the Build Actions tab page, modify build steps and parameters.
– On the Parameters tab page, customize parameters for running the build

task.
– On the Schedule tab page, configure continuous integration (the

triggering event) and scheduled execution.
– On the Change History tab page, view the change history of the build

task.
– On the Permissions tab page, configure permissions for different roles.
– On the Notifications tab page, configure task event type notification

information (Build succeeded, Build failed, Task deleted, Task
configurations updated, and Task disabled).

4. Edit the information on a tab page, and click Save.

Deleting the Build Task
1. Search for the target build task.
2. Click  in the row of the build task and choose Delete from the drop-down

list. Exercise caution when performing this operation.

CodeArts Build
User Guide 9 Managing and Configuring a Build Task

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 67



You can view the deleted build task in the recycle bin.

Cloning the Build Task
1. Search for the target build task.

2. Click  in the row of the build task, and choose Clone from the drop-down
list.

3. On the page that is displayed, modify the task information and click Clone.

NO TE

Cloning a task retains the permission matrix of the original task.

Favoriting the Build Task
1. Search for the target build task.

2. Move the cursor to the row of the build task and click . If the color of the
icon changes, the task is successfully followed.

3. (Optional) Click  to unfollow the task.

NO TE

● After you favorite a build task, the task is displayed on the top of the task list when you
refresh the page or access the task list next time. If you favorite many build tasks, the
tasks are sorted by task creation time in descending order.

● If you favorite a task that is not created by yourself, you can obtain the corresponding
notification based on the notification event type set for the task.

9.2 Configuring Build Parameters
By default, the codeBranch parameter and predefined parameters are generated
for a build task. You can modify the type and value of codeBranch and add
custom parameters as required. Predefined parameters and values are
automatically generated and can be referenced using ${parameter_name}.

Parameter Settings
1. Log in to the CodeArts Build homepage.

2. Search for the target build task.

3. In the row of the target build task, click  and choose Edit from the drop-
down list.

4. Switch to the Parameters tab.

The parameters are described in the following table.

CodeArts Build
User Guide 9 Managing and Configuring a Build Task

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 68



Basic
Information

Description

Name codeBranch and predefined parameters are generated
by the system and their names cannot be changed. You
can change the names of other custom parameters.

Type Parameter types include string and enumeration.

Default Value Default values are provided for different types of
parameters. You can change the values as required.

Private
Parameter

If a parameter is private, the system encrypts the input
for storage and only decrypts the parameter when using
it. Private parameters are not displayed in run logs.

Runtime Settings If this function is enabled, parameters can be changed
when a build task is executed independently and will be
reported to the pipeline. Runtime parameters need to
be entered during execution.

 

– Add a string parameter
Click Create Parameter. A string parameter is added by default. You can
edit the parameter as required.

– Add an enumeration parameter

i. Click Create Parameter. A string parameter is added by default.

ii. Click  next to the type and select Enumeration from the drop-
down list. The Enumeration dialog box is displayed.

iii. Set values for the parameter. Each value must end with a comma (,).
iv. After the setting is complete, select a value from the drop-down list

in the Default Value column.

Using Parameters

This section describes how to use custom and predefined parameters.

● Custom parameters

a. Configure an execution parameter.
Edit the build task, click the Parameters tab, add a parameter with a
custom name and value (in this example, set the name to myparam and
value to 1.0.1.1), and enable Runtime Settings.

b. Use the execution parameter.
Switch to the Build Actions tab, configure a build action, enter $
{myparam} in the Version text box, and save the build task.

CodeArts Build
User Guide 9 Managing and Configuring a Build Task

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 69



c. Run the build task.
In the displayed dialog box for setting parameters and running the task,
enter a value or use the default value.

d. Query the build package of this task in CodeArts Artifact. (It is assumed
that this build task is built with Maven and CodeArts Artifact is enabled.)
Go to the release repo and find the build package. The version of this
package is the value of myparam.

● Predefined parameters

a. Configure an execution parameter.
Edit the build task, click the Build Actions tab, configure a build action,
enter ${BUILDNUMBER} in the Version text box, and save the build task.

Paramet
er

Description

BUILDN
UMBER

Build ID in the format of date.times that this build task
run on that day. For example: 20200312.3.

GIT_CO
MMIT

Code commit ID. For example:
b6192120acc67074990127864d3fecaf259b20f5.

TIMESTA
MP

Build running timestamp. For example: 20190219191621.

INCREAS
ENUM

Total number of times that the task is run. The value starts
from 1 and is incremented by 1 each time the task is run.

PROJECT
_ID

Project ID.

WORKSP
ACE

Workspace, which is the root directory of the source code.

GIT_TAG Code tag name. The tag has a value only when used for
build.

 
b. Run the build task.
c. Query the build package of this task in release repos. (It is assumed that

this build task is built with Maven and CodeArts Artifact is enabled.)
Go to the release repo and find the build package. The version of this
package is the value of BUILDNUMBER.

9.3 Configuring Execution Plans
With CodeArts Build, you can configure triggering events and scheduled tasks, so
developers can achieve continuous project integration.

Continuous Integration
1. Log in to the CodeArts Build homepage.

CodeArts Build
User Guide 9 Managing and Configuring a Build Task

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 70



1. Search for the target build task.

2. Click  in the Operation column and choose Edit from the drop-down list.
Click the Schedule tab page.

3. Enable Run upon Code Commit.

4. After this function is enabled, a build task is triggered when the source code
referenced by the build task is committed.

Scheduled Execution
1. Enable Scheduled Execution.

2. Select a scheduled execution time of the build task. Enable Upon Code
Change as required.

3. After this function is enabled, the build task executes tasks based on the
scheduled execution date and time.

4. If you enable both Scheduled Execution and Upon Code Change, the build
task is executed only when the specified execution date and time are reached
and the code changes compared with the last build.

9.4 Configuring Role Permissions
CodeArts Build allows you to configure permissions for each role of a build task.

Procedure
Step 1 Log in to the CodeArts Build homepage.

Step 2 Search for the target build task.

Step 3 In the row of the target build task, click  and choose Edit from the drop-down
list. Then click the Permissions tab.

CodeArts Build
User Guide 9 Managing and Configuring a Build Task

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 71



You can configure permissions for different roles as required.

Click Synchronize Project Permissions to synchronize the current build task
permissions as the project permissions. For details about how to configure project
permissions, see Setting Project Permissions.

----End

9.5 Configuring Event Notifications
CodeArts Build can notify you of build successes or failures, task disabling, task
configuration updates, and task deletion by message or email.

Message/Email Notifications
1. Log in to the CodeArts Build homepage.

1. Search for the target build task.

2. Click  in the Operation column and choose Edit from the drop-down list.
The Build Actions tab page is displayed.

3. Click the Notifications tab and configure Notification and Email separately.
By default, message notifications are sent for all events and email

notifications are sent for build failures. Click  to enable notifications or

click  to disable notifications.

CodeArts Build
User Guide 9 Managing and Configuring a Build Task

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 72

https://support.huaweicloud.com/eu/usermanual-projectman/devcloud_hlp_00118.html


10 Other Operations

10.1 Configuring Code Source

10.1.1 Introduction
By default, code is pulled from CodeArts Repo for build. Service endpoints are
extensions or plug-ins of CodeArts and provide the capability of connecting to
third-party services.

CodeArts Build uses service endpoints to connect to Git repositories to obtain
project code. You can create, edit, and delete such connections.

NO TE

● The network may be unstable or other problems may occur when a third-party
repository is used.

● Use the code import function of CodeArts Repo for secure, stable, and efficient
download and build.

10.1.2 Using Git for Build
● By default, CodeArts Build pulls code from CodeArts Repo. For code hosted on

other services, you can use a Git connection to pull the code.

● Git connections are authorized using AccessToken and are used only to pull
code during build.

Procedure

Step 1 Create a build task and select Git for Code Source. If you use the Git connection
for the first time, create an endpoint instance first.

Step 2 Click Create next to Endpoint.

Step 3 In the Create Service Endpoint dialog box displayed, configure parameters.

CodeArts Build
User Guide 10 Other Operations

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 73



Table 10-1 Parameters

Parameter Description

Service Endpoint
Name

Name of the service endpoint.

Git Repository
URL

URL of the Git repository (HTTPS address).

Username Username used for logging in to the Git repository.

Password or
Access Token

Git repository password or access token.

 

Step 4 Click OK.

----End

10.2 Operations Recorded by CTS
With CTS, you can record operations associated with CodeArts Build for future
query, audit, and backtrack operations.

After you enable CTS, it starts recording operations on build resources.

View traces of the last seven days on the CTS console. For details about viewing
logs in CTS, see Querying Real-Time Traces.

Table 10-2 Operations that can be recorded by CTS

Operation Resource Type Event

Creating a build task CloudBuildsServer createJob

Running a build task CloudBuildServer buildJob

Deleting a build task CloudBuildServer deleteJob

CodeArts Build
User Guide 10 Other Operations

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 74

https://support.huaweicloud.com/eu/usermanual-cts/cts_02_0005.html


Operation Resource Type Event

Updating a build task CloudBuildServer updateJob

Disabling a build task CloudBuildServer disableJob

Enabling a build task CloudBuildServer enableJob

Uploading a keystore file CloudBuildServer uploadKeystore

Updating a keystore file CloudBuildServer updateKeystore

Deleting a keystore file CloudBuildServer deleteKeystore

Initializing the EFS
directory and storage
quota

CloudBuildCache initEFSDirAndQuota

Uploading a report
(including the unit test
and dependency
analysis)

CloudBuildReport uploadReport

Creating a custom
template

CloudBuildTemplateSer-
vice

createCustomTemplate

Deleting a custom
template

CloudBuildTemplateSer-
vice

deleteCustomTemplate

Updating nextfs
information

nextfsInfo updateNextfsInfo

Creating nextfs nextfsInfo createNextfsInfo

Associating nextfs with a
tenant

tenantNextfs createTenantNextfs

Disassociating a tenant
from nextfs

tenantNextfs deleteTenantNextfs

Modifying License
information

licenseInfo updateLicenseInfo

Creating a tenant license licenseInfo createLicenseInfo

Creating code cache
information

codeCacheInfo createCodeCacheInfo

Deleting code cache
information

codeCacheInfo deleteCodeCacheInfo

Creating records of using
code cache

cacheHistoryInfo createCacheHistoryInfo

Updating usage info of
code cache

cacheHistoryInfo updateCacheHistoryInfo

 

CodeArts Build
User Guide 10 Other Operations

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 75



10.3 Recycle Bin
Deleted build tasks are stored in the recycle bin. You can manage these tasks
using your account.

Step 1 Log in to the CodeArts Build homepage.

Step 2 In the upper right corner of CodeArts Build homepage, click More and choose
Recycle Bin from the drop-down list.

The page displays deleted build tasks and allows the operations listed in the
following table.

Operation Description

Modify the
task retention
period

Click the select box next to Task Retention Period and select
from 1 to 30 days.

Search for a
task

Enter a keyword in the search box and click  to search.

Delete a task Select the task to be deleted from the list and click Delete.

Restore a task Select the task to be restored from the list and click Restore.

Clear the
recycle bin

Click Empty Recycle Bin to delete all tasks from the recycle
bin.

 

----End

10.4 File Management
Android APK signature files and Maven build configuration file settings.xml can
be created, edited, deleted, and controlled for access. The maximum file size is 100
KB, and the file type can be .xml, .key, .keystore, .jks, .crt, or .pem.

● Uploading a file

a. Log in to the CodeArts Build homepage.
b. Click More in the upper right corner and choose Files.
c. Click Upload File.
d. In the displayed dialog box, select a file, add a description, agree to the

statements, and click Save.

CodeArts Build
User Guide 10 Other Operations

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 76



● Managing a file

After uploading a file, you can edit, download, and delete it, and configure
file operation permissions for the user.

– Click  in the Operation column to modify the file name and specify
whether to allow all members of your account to use the file in CodeArts
Build.

– Click  in the Operation column to download the file.

– Click  in the Operation column and confirm the deletion as prompted.

– Click  in the Operation column to configure file operation permissions
for the user.

Table 10-3 File management permissions

Permission Role with the Permission

Create a file All users in the project

View a file File creator and users under the same account

Use a file File creator and users with the use permissions
configured by the file creator

Update a
file

File creator and users with the update permissions
configured by the file creator

CodeArts Build
User Guide 10 Other Operations

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 77



Permission Role with the Permission

Delete a file File creator and users with the delete permissions
configured by the file creator

Manage
permissions

File creator

 

NO TE

By default, the creator has all permissions, which cannot be deleted or modified.

Generating Keystore Signature Files
● Using Keytool to Generate Signature Files

a. Find the JDK installation path and run keytool.exe.

b. Run the following command to generate a .jks file:
keytool -genkeypair -storepass 123456 -alias apksign -keypass 123456 -keyalg RSA -validity 
20000 -keystore D:/android.jks

● Using Android Studio to Generate Signature Files

a. Open Android Studio and choose Build > Generate Signed Bundle/APK.

CodeArts Build
User Guide 10 Other Operations

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 78



b. Click APK and click Next.
c. Click Create new. In the dialog box displayed, enter related information,

and click OK. Then click Next.

d. View the signature generated file.

CodeArts Build
User Guide 10 Other Operations

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 79



NO TE

You can upload the generated signature file to Files for unified management.

Using the settings.xml File
1. When creating or editing a Maven build task, add the Download File from

File Manager action on the Build Actions tab page, and select the uploaded
settings.xml file.

2. Add --settings settings.xml to the end of the default Maven build command
so that you can use the file for build.

CodeArts Build
User Guide 10 Other Operations

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 80



10.5 Customizing Templates
Build template selection: If the preset build templates cannot meet build
requirements, you can customize a build template.

Step 1 Log in to the CodeArts Build homepage.

Step 2 Select a build task from the list and click the task name. The Build History tab
page is displayed.

NO TE

If no task is available, create a build task.

Step 3 Click  in the upper right corner of the page. Select Make Template from the
drop-down list.

Step 4 Enter the template name and description, and click Save.

Step 5 Click the username in the upper right corner, and select All Account Settings
from the drop-down list.

Step 6 In the navigation pane, choose Build > Templates. The saved template is
displayed.

You can perform the following operations on saved templates.

Table 10-4 Managing custom templates

Operation Description

Favorite a
template

Click  to add the template to your favorites.

Delete a
template

Click . In the dialog box that is displayed, click Yes to delete
the template.

 

----End

10.6 Custom Build Environments

Background

If the common build environments cannot meet your requirements, customize an
environment. To do this, add dependencies and tools required by the project to the
base image of the custom environment, build the image into a Docker image
and push it to SWR for public use. Then you can use the public image through
SWR.

CodeArts Build
User Guide 10 Other Operations

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 81



Base Image
CodeArts Build uses CentOS 7 and Ubuntu 18 as the base images, which are
provided with multiple common environment tools. You can configure custom
environments as required.

The built-in environment tools include:

JDK 1.8, Maven, Git, Ant, zip, unzip, GCC, CMake, and Make

Procedure

Step 1 Log in to the CodeArts Build homepage.

Step 2 In the upper right corner of CodeArts Build homepage, click More and choose
Custom Build Environments from the drop-down list.

Step 3 On the Custom Build Environments page, click a base image to download the
Dockerfile template.

Step 4 Edit the downloaded Dockerfile.

You can add other dependencies and tools required by the project as required to
customize the Dockerfile. The following figure shows an example of adding JDK
and Maven tools.
RUN yum install -y java-1.8.0-openjdk.x86_64
RUN yum install -y maven
RUN echo 'hello world!'
RUN yum clean all

----End

CodeArts Build
User Guide 10 Other Operations

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 82


	Contents
	1 Before You Start
	2 Roles & Permissions
	3 Process
	4 Logging In to the CodeArts Build Homepage
	5 Creating a Build Task
	6 Configuring Build Actions
	6.1 Introduction
	6.2 Graphical Build
	6.2.1 Configuring Build Environment
	6.2.2 Configuring Code Download
	6.2.3 Build with Maven
	6.2.3.1 Operation Guide
	6.2.3.2 Configuring a Repository
	6.2.3.3 Configuring the Release to Self-hosted Repos
	6.2.3.4 Configuring a Unit Test

	6.2.4 Build with Android
	6.2.5 Sign Android APK
	6.2.6 Build with npm
	6.2.7 Build with Gradle
	6.2.8 Build with Yarn
	6.2.9 Build with Gulp
	6.2.10 Build with Grunt
	6.2.11 Build with Mono
	6.2.12 Build in PHP
	6.2.13 Build with Setuptools
	6.2.14 Build with PyInstaller
	6.2.15 Run Shell Commands
	6.2.16 Build with GNU Arm
	6.2.17 Build with CMake
	6.2.18 Build with Ant
	6.2.19 Build with Go
	6.2.20 Build Android Quick App
	6.2.21 Creating Images and Pushing to SWR
	6.2.22 Using SWR Public Images
	6.2.23 Uploading Software Packages to Release Repos
	6.2.24 Uploading Files to OBS
	6.2.25 Running Docker Commands
	6.2.26 Downloading Package from Release Repos
	6.2.27 Downloading File from File Manager

	6.3 Code-based Build
	6.3.1 Configuring a Task
	6.3.1.1 Introducing the YAML File Structure
	6.3.1.2 Using YAML for Build
	6.3.1.3 Using YAML to Configure Code Download
	6.3.1.4 Using YAML to Configure Manifest File Download from Repositories
	6.3.1.5 Using YAML to Configure and Execute Shell Commands
	6.3.1.6 Using YAML to Configure a Maven Build
	6.3.1.7 Using YAML to Configure an npm Build
	6.3.1.8 Using YAML to Configure a Yarn Build
	6.3.1.9 Using YAML to Configure a Build with Go
	6.3.1.10 Using YAML to Configure a Build with Gulp
	6.3.1.11 Using YAML to Configure a Build with Grunt
	6.3.1.12 Using YAML to Configure a PHP Build
	6.3.1.13 Using YAML to Configure a Build with GNU Arm
	6.3.1.14 Using YAML to Configure a Build with Setuptools
	6.3.1.15 Using YAML to Configure a Build with PyInstaller
	6.3.1.16 Using YAML to Configure a Python Build
	6.3.1.17 Using YAML to Configure a Gradle Build
	6.3.1.18 Using YAML to Configure an Ant Build
	6.3.1.19 Using YAML to Configure a CMake Build
	6.3.1.20 Using YAML to Configure a Mono Build
	6.3.1.21 Using YAML to Configure a Build with Flutter
	6.3.1.22 Using YAML to Configure an sbt Build
	6.3.1.23 Using YAML to Configure an Android Build
	6.3.1.24 Using YAML to Sign Android APK
	6.3.1.25 Using YAML to Inject an APM Probe into an Android App
	6.3.1.26 Using YAML to Build an Android Quick App
	6.3.1.27 Using YAML to Configure a Bazel Build
	6.3.1.28 Using YAML to Configure a Build with Grails
	6.3.1.29 Using YAML to Build an Android App with Ionic
	6.3.1.30 Using YAML to Configure a Fortran Build
	6.3.1.31 Using YAML to Configure a Build with MSBuild
	6.3.1.32 Using YAML to Create an Image and Upload It to SWR
	6.3.1.33 Using YAML to Specify SWR Public Images
	6.3.1.34 Using YAML to Upload Files to OBS
	6.3.1.35 Using YAML to Download Files
	6.3.1.36 Using YAML to Upload Binary Packages to a Repository
	6.3.1.37 Using YAML to Download Binary Packages
	6.3.1.38 Using YAML to Run Docker Commands

	6.3.2 Configuring Tasks


	7 Running a Build Task
	8 Viewing a Build Task
	9 Managing and Configuring a Build Task
	9.1 Editing, Deleting, Copying, and Favoriting a Build Task
	9.2 Configuring Build Parameters
	9.3 Configuring Execution Plans
	9.4 Configuring Role Permissions
	9.5 Configuring Event Notifications

	10 Other Operations
	10.1 Configuring Code Source
	10.1.1 Introduction
	10.1.2 Using Git for Build

	10.2 Operations Recorded by CTS
	10.3 Recycle Bin
	10.4 File Management
	10.5 Customizing Templates
	10.6 Custom Build Environments


